- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
现有6名奥运会志愿者,其中志愿者
通晓日语,
通晓俄语,
通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求
被选中的概率;
(2)求
和
不全被选中的概率;
(3)若6名奥运会志愿者每小时派两人值班,现有两名只会日语的运动员到来,求恰好遇到
的概率.



(1)求

(2)求


(3)若6名奥运会志愿者每小时派两人值班,现有两名只会日语的运动员到来,求恰好遇到

某工程设备租赁公司为了调查A,B两种挖掘机的出租情况,现随机抽取了这两种挖掘机各100台,分别统计了每台挖掘机在一个星期内的出租天数,统计数据如下表:

(I)根据这个星期的统计数据,将频率视为概率,求该公司一台A型挖掘机,一台B型挖掘机一周内合计出租天数恰好为4天的概率;
(II)如果A,B两种挖掘机每台每天出租获得的利润相同,该公司需要从A,B两种挖掘机中购买一台,请你根据所学的统计知识,给出建议应该购买哪一种类型,并说明你的理由.

(I)根据这个星期的统计数据,将频率视为概率,求该公司一台A型挖掘机,一台B型挖掘机一周内合计出租天数恰好为4天的概率;
(II)如果A,B两种挖掘机每台每天出租获得的利润相同,该公司需要从A,B两种挖掘机中购买一台,请你根据所学的统计知识,给出建议应该购买哪一种类型,并说明你的理由.
为弘扬中华传统文化,某单位举行了诗词大赛,经过初赛,最终甲乙两人进行决赛,争夺冠亚军,决赛规则如下:①比赛共设有五道题;②双方轮流答题,每次回答一道,两人答题的先后顺序通过抽签决定;③若答对,自已得1分;若答错,则对方得1分;④先得3分者获胜.
已知甲、乙各参加了三场初赛,答题情况统计如下表:
以甲、乙初赛三场答题的平均正确率作为他们决赛答题正确的概率,且他们每次答题的结果相互独立,
(1)若甲先答题,求甲
获得冠军的概率;
(2)若甲先答题,求甲获得冠军的概率;
(3)甲获得冠军是否与谁先答题有关?(不要求写过程)
已知甲、乙各参加了三场初赛,答题情况统计如下表:
| 第一场 | 第二场 | 第三场 |
甲 | 8对2错 | 7对3错 | 9对1错 |
乙 | 7对3错 | 10对0错 | 8对2错 |
以甲、乙初赛三场答题的平均正确率作为他们决赛答题正确的概率,且他们每次答题的结果相互独立,
(1)若甲先答题,求甲

(2)若甲先答题,求甲获得冠军的概率;
(3)甲获得冠军是否与谁先答题有关?(不要求写过程)
(本小题满分14分)体育测试成绩分为四个等级:优、良、中、不及格.某班50名学生参加测试的结果如下:
(1)从该班任意抽取1名学生,求这名学生的测试成绩为“良”或“中”的概率;
(2)测试成绩为“优”的3名男生记为
,
,
,2名女生记为
,
.现从这5人中任选2人参加学校的某项体育比赛.
① 写出所有等可能的基本事件;
② 求参赛学生中恰有1名女生的概率.
等级 | 优 | 良 | 中 | 不及格 |
人数 | 5 | 19 | 23 | 3 |
(1)从该班任意抽取1名学生,求这名学生的测试成绩为“良”或“中”的概率;
(2)测试成绩为“优”的3名男生记为





① 写出所有等可能的基本事件;
② 求参赛学生中恰有1名女生的概率.
为了检验训练情况,武警某支队于近期举办了一场展示活动,其中男队员12人,女队员18人,测试结果如茎叶图所示(单位:分).若成绩不低于175分者授予“优秀警员”称号,其他队员则给予“优秀陪练员”称号.
(1)若用分层抽样的方法从“优秀警员”和“优秀陪练员”中共提取10人,然后再从这10人中选4人,那么至少有1人是“优秀警员”的概率是多少?
(2)若所有“优秀警员”中选3名代表,用
表示所选女“优秀警员”的人数,试求
的分布列和数学期望.
(1)若用分层抽样的方法从“优秀警员”和“优秀陪练员”中共提取10人,然后再从这10人中选4人,那么至少有1人是“优秀警员”的概率是多少?
(2)若所有“优秀警员”中选3名代表,用



一个袋中装有1红、2白和2黑共5个小球,这5个球除颜色外其它都相同,现从袋中任取2个球,则至少取到1个白球的概率为__________.
从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是______ .(填序号)
①“至少有一个黑球”与“都是黑球”;
②“至少有一个黑球”与“至少有一个红球”;
③“恰有一个黑球”与“恰有两个黑球”;
④“至少有一个黑球”与“都是红球”.
如图, A, B, C表示3种开关,设在某段时间内它们正常工作的概率是分别是0.9 , 0.8 , 0.7 , 如果系统中至少有1个开关能正常工作,则该系统就能正常工作, 那么该系统正常工作的概率是____________
