- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为( )
A.0.95 | B.0.97 | C.0.92 | D.0.08 |
下列正确的结论是( )
A.事件A的概率![]() ![]() |
B.如![]() ![]() |
C.灯泡的合格率是![]() ![]() |
D.如![]() ![]() |
做投掷2颗骰子的试验,用(x,y)表示结果,其中x表示第1颗骰子出现的点数,y 表示第2颗骰子出现的点数,写出:
(1)求事件“出现点数相等”的概率 (2)求事件“出现点数之和大于8”的概率.
(1)求事件“出现点数相等”的概率 (2)求事件“出现点数之和大于8”的概率.
如图所示是某市2017年4月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某同志随机选择4月1日至4月12日中的某一天到达该市,并停留3天.
如果消息
发生的概率为
,那么消息
所含的信息量为
,若王教授正在一个有4排8列座位的小型报告厅里听报告,则发布的以下4条消息中,信息量最大的是( )




A.王教授在第4排 | B.王教授在第4排第5列 |
C.王教授在第5列 | D.王教授在某一排 |
一批产品次品率为4%,正品中一等品率为75%.现从这批产品中任取一件,恰好取到一等品的概率为( )
A.0.75 | B.0.71 | C.0.72 | D.0.3 |
“蛟龙号”从海底中带回的某种生物,甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为
,乙组能使生物成活的概率为
,假定试验后生物成活,则称该试验成功,如果生物不成活,则称该次试验是失败的.
(1)甲小组做了三次试验,求至少两次试验成功的概率;
(2)若甲乙两小组各进行2次试验,设试验成功的总次数为
,求
的期望.


(1)甲小组做了三次试验,求至少两次试验成功的概率;
(2)若甲乙两小组各进行2次试验,设试验成功的总次数为


若甲、乙二人进行乒乓球比赛,已知每一局甲胜的概率为
,乙胜的概率为
,比赛时可以用三局两胜和五局三胜制,问在哪种比赛制度下,甲获胜的可能性较大.(写出计算过程)


某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过
关者奖励
件小奖品(奖品都一样).下图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.




(Ⅰ)求小明在这十次游戏中所得奖品数的均值;
(Ⅱ)规定过三关者才能玩另一个高级别的游戏,估计小明一次游戏后能玩另一个游戏的概率;
(Ⅲ)已知小明在某四次游戏中所过关数为{2,2,3,4},小聪在某四次游戏中所过关数为{3,3,4,5},现从中各选一次游戏,求小明和小聪所得奖品总数超过10的概率.
