- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人一张,则事件“甲分得红牌”与事件“丁分得红牌”( )
A.不是互斥事件 | B.是互斥但不对立事件 |
C.是对立事件 | D.以上答案都不对 |
我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓放粮,有人送来米
石,验得米内夹谷,抽样取米一把,数得
粒内夹谷
粒,则这批米内夹谷约为__________ 石;(结果四舍五入,精确到各位).



设每门高射炮命中飞机的概率为
,且每一门高射炮是否命中飞机是独立的,若有一敌机来犯,则需要______ 门高射炮射击,才能以至少
的概率命中它.


甲、乙两人同时参加一个外贸公司的招聘,招聘分笔试与面试两部分,先笔试后面试.甲笔试与面试通过的概率分别为0.8,0.5,乙笔试与面试通过的概率分别为0.8,0.4,且笔试通过了才能进入面试,面试通过则直接招聘录用,两人笔试与面试相互独立互不影响.
(1)求这两人至少有一人通过笔试的概率;
(2)求这两人笔试都通过却都未被录用的概率;
(3)记这两人中最终被录用的人数为X,求X的分布列和数学期望.
(1)求这两人至少有一人通过笔试的概率;
(2)求这两人笔试都通过却都未被录用的概率;
(3)记这两人中最终被录用的人数为X,求X的分布列和数学期望.
设一元二次方程Ax2+Bx+C=0,根据下列条件分别求解:
(1)若A=1,B、C是1枚骰子先后掷两次出现的点数,求方程有实数根的概率;
(2)若B=-A,C=A-3,且方程有实数根,求方程至少有一个非正实数根的概率.
(1)若A=1,B、C是1枚骰子先后掷两次出现的点数,求方程有实数根的概率;
(2)若B=-A,C=A-3,且方程有实数根,求方程至少有一个非正实数根的概率.
设
.
(1)若
,且
是实系数一元二次方程
的一根,求
和
的值;
(2)若
是纯虚数,已知
时,
取得最大值,求
;
(3)肖同学和谢同学同时独立地解答第(2)小题,己知两人能正确解答该题的概率分别是0.8和0.9,求该题能被正确解答的概率.

(1)若





(2)若




(3)肖同学和谢同学同时独立地解答第(2)小题,己知两人能正确解答该题的概率分别是0.8和0.9,求该题能被正确解答的概率.
从1至9这9个自然数中任取两个:
恰有一个偶数和恰有一个奇数;
至少有一个是奇数和两个数都是奇数;
至多有一个奇数和两个数都是奇数;
至少有一个奇数和至少有一个偶数.
在上述事件中,是对立事件的是





在上述事件中,是对立事件的是


A.![]() | B.![]() | C.![]() | D.![]() |
口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件
“取出的两球同色”,
“取出的2球中至少有一个黄球”,
“取出的2球至少有一个白球”,
“取出的两球不同色”,
“取出的2球中至多有一个白球”.下列判断中正确的序号为________ .
①
与
为对立事件;②
与
是互斥事件;③
与
是对立事件:④
;⑤
.





①








近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000t生活垃圾.经分拣以后数据统计如下表(单位:
):根据样本估计本市生活垃圾投放情况,下列说法错误的是( )

| 厨余垃圾”箱 | 可回收物”箱 | 其他垃圾”箱 |
厨余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
A.厨余垃圾投放正确的概率为![]() |
B.居民生活垃圾投放错误的概率为![]() |
C.该市三类垃圾箱中投放正确的概率最高的是“可回收物”箱 |
D.厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量的方差为20000 |
某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛,在下列选项中,互斥而不对立的两个事件是( )
A.“至少有1名女生”与“都是女生” | B.“恰有1名女生”与“恰有2名女生” |
C.“至少有1名女生”与“至多有1名女生” | D.“至少有1名男生”与“都是女生” |