- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设事件A,B,已知P(A)
,P(B)
,P(A∪B)
,则A,B之间的关系一定为( )



A.两个任意事件 | B.互斥事件 |
C.非互斥事件 | D.对立事件 |
从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取出一张卡片并记下号码,统计结果如下:
则取到的号码为奇数的频率是( )
卡片号码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
取出的次数 | 10 | 11 | 8 | 8 | 6 | 10 | 18 | 9 | 11 | 9 |
则取到的号码为奇数的频率是( )
A.0.53 | B.0.5 | C.0.47 | D.0.37 |
下列事件中,是随机事件的是( ).
A.长度为3,4,5的三条线段可以构成一个三角形 |
B.长度为2,3,4的三条线段可以构成一个直角三角形 |
C.方程![]() |
D.函数![]() ![]() ![]() |
在平面直角坐标系xOy中,设点集
,
令
.从集合Mn中任取两个不同的点,用随机变量X表示它们之间的距离.
(1)当n=1时,求X的概率分布;
(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).



(1)当n=1时,求X的概率分布;
(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).
设甲、乙两位同学上学期间,每天7:10之前到校的概率均为
.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(1)用
表示甲同学上学期间的每周五天中7:10之前到校的天数,求随机变量
的分布列和数学期望;
(2)记“上学期间的某周的五天中,甲同学在7:10之前到校的天数比乙同学在7:10之前到校的天数恰好多3天”为事件
,求事件
发生的概率.

(1)用


(2)记“上学期间的某周的五天中,甲同学在7:10之前到校的天数比乙同学在7:10之前到校的天数恰好多3天”为事件


给出如下四对事件:①某人射击1次,“射中7环”与“射中8环”;
②甲、乙两人各射击1次,“甲射中7环”与“乙射中8环”;
③甲、乙两人各射击1次,“两人均射中目标”与“两人均没有射中目标”;
④甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”,
其中属于互斥事件的有______对.
②甲、乙两人各射击1次,“甲射中7环”与“乙射中8环”;
③甲、乙两人各射击1次,“两人均射中目标”与“两人均没有射中目标”;
④甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”,
其中属于互斥事件的有______对.
从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是( )
A.“至少有一个黑球”与“都是黑球” | B.“至少有一个黑球”与“至少有一个红球” |
C.“恰好有一个黑球”与“恰好有两个黑球” | D.“至少有一个黑球”与“都是红球” |
我国古代数学名著《九章算术》中有“米谷粒分”题:粮仓开仓收粮,有人送来米1536石,验得米内夹谷,抽样取米一把,数得256粒内夹谷18粒,则这批米内夹谷约为( )
A.108石 | B.169石 | C.237石 | D.338石 |
从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )
A.“至少有1个白球”和“都是红球” |
B.“至少有2个白球”和“至多有1个红球” |
C.“恰有1个白球” 和“恰有2个白球” |
D.“至多有1个白球”和“都是红球” |