- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下2×2的列联表:
由公式
,算得
附表:
参照附表,以下结论正确是( )
| 喜欢该项运动 | 不喜欢该项运动 | 总计 |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由公式


附表:
![]() | 0.025 | 0.01 | 0.005 |
![]() | 5.024 | 6.635 | 7.879 |
参照附表,以下结论正确是( )
A.有![]() |
B.有![]() |
C.有![]() |
D.有![]() |
随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.
(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面
列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;
(Ⅱ)若从年龄在[25,35)和[55,65)的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在[55,65)的概率.
参考数据如下:
附临界值表:
的观测值:
(其中
)
年龄(单位:岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面

| 年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 |
赞成 | | | |
不赞成 | | | |
合计 | | | |
(Ⅱ)若从年龄在[25,35)和[55,65)的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在[55,65)的概率.
参考数据如下:
附临界值表:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |



下列说法正确的是( )
A.相关关系是一种不确定的关系,回归分析是对相关关系的分析,因此没有实际意义 |
B.独立性检验对分类变量关系的研究没有100%的把握,所以独立性检验研究的结果在实际中也没有多大的实际意义 |
C.相关关系可以对变量的发展趋势进行预报,这种预报可能是错误的 |
D.独立性检验如果得出的结论有99%的可信度就意味着这个结论一定是正确的 |
随机询问某大学40名不同性别的大学生在购买食物时是否读营养说明,得到如下列联表:
(1)根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与是否读营养说明之间有关系?
(2)从被询问的16名不读营养说明的大学生中,随机抽取2名学生,求抽到男生人数
的分布列及其均值(即数学期望).
(注:
,其中
为样本容量)
| 男 | 女 | 总计 |
读营养说明 | 16 | 8 | 24 |
不读营养说明 | 4 | 12 | 16 |
总计 | 20 | 20 | 40 |
(1)根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与是否读营养说明之间有关系?
(2)从被询问的16名不读营养说明的大学生中,随机抽取2名学生,求抽到男生人数

(注:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
对某校学生进行心理障碍测试得到如下列联表:
试说明在这三种心理障碍中哪一种与性别关系最大?
| 焦 虑 | 说 谎 | 懒 惰 | 合 计 |
女 生 | 5 | 10 | 15 | 30 |
男 生 | 20 | 10 | 50 | 80 |
合 计 | 25 | 20 | 65 | 110 |
试说明在这三种心理障碍中哪一种与性别关系最大?
随着“全面二孩”政策推行,我市将迎来生育高峰。今年新春伊始,泉城各医院产科就已经是一片忙碌至今热度不减。卫生部门进行调查统计期间发现各医院的新生儿中,不少都是“二孩”;在市第一医院,共有40个猴宝宝降生,其中10个是“二孩”宝宝;
(1)从两个医院当前出生的所有宝宝中按分层抽样方法抽取7个宝宝做健康咨询,
①在市第一医院出生的一孩宝宝中抽取多少个?
②若从7个宝宝中抽取两个宝宝进行体检,求这两个宝宝恰出生不同医院且均属“二孩”的概率;
(II)根据以上数据,能否有85%的把握认为一孩或二孩宝宝的出生与医院有关?
K2=
(1)从两个医院当前出生的所有宝宝中按分层抽样方法抽取7个宝宝做健康咨询,
①在市第一医院出生的一孩宝宝中抽取多少个?
②若从7个宝宝中抽取两个宝宝进行体检,求这两个宝宝恰出生不同医院且均属“二孩”的概率;
(II)根据以上数据,能否有85%的把握认为一孩或二孩宝宝的出生与医院有关?
P(k≥k市) | 0.40 | 0.25 | 0.15 | 0.10 |
k市 | 0.708 | 1.323 | 2.072 | 2.706 |
K2=

为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了
名女性或
名男性,根据调研结果得到如图所示的等高条形图.

(1)完成下列
列联表:
(2)能否在犯错误概率不超过
的前提下认为“喜欢旅游与性别有关”.
附:
参考公式:
,其中



(1)完成下列

| 喜欢旅游 | 不喜欢旅游 | 估计 |
女性 | | | |
男性 | | | |
合计 | | | |
(2)能否在犯错误概率不超过

附:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
参考公式:


通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:
参考公式:
则根据以上数据:
| 女 | 男 | 总计 |
读营养说明 | 16 | 28 | 44 |
不读营养说明 | 20 | 8 | 28 |
总计 | 36 | 36 | 72 |
参考公式:

![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
则根据以上数据:
A.能够以99.5%的把握认为性别与读营养说明之间无关系; |
B.能够以99.9%的把握认为性别与读营养说明之间无关系; |
C.能够以99.5%的把握认为性别与读营养说明之间有关系; |
D.能够以99.9%的把握认为性别与读营养说明之间有关系; |
为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

(Ⅰ)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(Ⅱ)能否有
的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.
附:

(Ⅰ)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(Ⅱ)能否有

(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.
附:

![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
调查339名50岁以上有吸烟习惯与患慢性气管炎的人的情况,获数据如下
试问:(1)有吸烟习惯与患慢性气管炎病是否有关?
(2)用假设检验的思想给予说明.
| 患慢性气管炎 | 未患慢性气管炎 | 总计 |
吸烟 | 43 | 162 | 205 |
不吸烟 | 13 | 121 | 134 |
合计 | 56 | 283 | 339 |
试问:(1)有吸烟习惯与患慢性气管炎病是否有关?
(2)用假设检验的思想给予说明.