- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520个女性中6人患色盲.
(Ⅰ)根据题中数据建立一个
的列联表;
(Ⅱ)在犯错误的概率不超过0.001的前提下,能否认为“性别与患色盲有关系”?
附:参考公式
,
(Ⅰ)根据题中数据建立一个

(Ⅱ)在犯错误的概率不超过0.001的前提下,能否认为“性别与患色盲有关系”?
附:参考公式


2017年春节晚会与1月27日晚在CCTV进行直播.某广告策划公司为了了解本单位员工对春节晚会的关注情况,春节后对本单位部分员工进行了调查.其中有75%的员工看春节晚会直播时间不超过120分钟,这一部分员工看春节晚会直播时间的茎叶图如图(单位:分钟),而其中观看春节晚会直播时间超过120分钟的员工中,女性员工占
.若观看春节晚会直播时间不低于60分钟视为“喜爱春晚”,否则视为“不喜爱春晚”.

附:参考数据:
参考公式:
,
)
(Ⅰ)若从观看春节晚会直播时间为120分钟的员工中抽取2人,求2人中恰好有1名女性员工的概率;
(Ⅱ)试完成下面的
列联表,并依此数据判断是否有99.9%以上的把握认为“喜爱春晚”与性别相关?


附:参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:


(Ⅰ)若从观看春节晚会直播时间为120分钟的员工中抽取2人,求2人中恰好有1名女性员工的概率;
(Ⅱ)试完成下面的

| 喜爱春晚 | 不喜爱春晚 | 合计 |
男性员工 | | | |
女性员工 | | | |
合计 | | | |
第十二届全国人民代表大会第五次会议和政协第十二届全国委员会第五次会议(简称两会)分别于2017年3月5日和3月3日在北京开幕,某高校学生会为了解该校学生对全国两会的关注情况,随机调查了该校200名学生,并将这200名学生分为对两会“比较关注”与“不太关注”两类,已知这200名学生中男生比女生多20人,对两会“比较关注”的学生中男生人数比女生人数之比为
,对两会“不太关注”的学生中男生比女生少5人.
(Ⅰ)根据题意建立的
列联表,并判断是否有
的把握认为男生与女生对两会的关注有差异?
(Ⅱ)该校学生会从对两会“比较关注”的学生中根据性别进行分层抽样,从中抽取7人,再从这7人中随机选出2人参与两会宣传活动,求这2人全是男生的概率.
附:
,
.

(Ⅰ)根据题意建立的


(Ⅱ)该校学生会从对两会“比较关注”的学生中根据性别进行分层抽样,从中抽取7人,再从这7人中随机选出2人参与两会宣传活动,求这2人全是男生的概率.
附:
![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |


为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了300名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:
(Ⅰ)根据题意完成表格;
(Ⅱ)是否有
的把握认为愿意做志愿者工作与性别有关?
附:
,
| 愿意做志愿者工作 | 不愿意做志愿者工作 | 合计 |
男大学生 | | | 180 |
女大学生 | | 45 | |
合计 | 200 | | |
(Ⅰ)根据题意完成表格;
(Ⅱ)是否有

附:


![]() | 0.5 | 0.40 | 0.25 | 0.15 | 0.10 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 |
某种多面体玩具共有12个面,在其十二个面上分别标有数字1,2,3,…,12.若该玩具质地均匀,则抛掷该玩具后,任何一个数字所在的面朝上的概率均相等.
为检验某批玩具是否合格,制定检验标准为:多次抛掷该玩具,并记录朝上的面上标记的数字,若各数字出现的频率的极差不超过0.05.则认为该玩具合格.

(1)对某批玩具中随机抽取20件进行检验,将每个玩具各面数字出现频率的极差绘制成茎叶图(如图所示),试估计这批玩具的合格率;
(2)现有该种类玩具一个,将其抛掷100次,并记录朝上的一面标记的数字,得到如下数据:
1)试判定该玩具是否合格;
2)将该玩具抛掷一次,记事件
:向上的面标记数字是完全平方数(能写成整数的平方形式的数,如
,9为完全平方数);事件
:向上的面标记的数字不超过4.试根据上表中的数据,完成以下列联表(其中
表示
的对立事件),并回答在犯错误的概率不超过0.01的前提下,能否认为事件
与事件
有关.
(参考公式及数据:
,
)
为检验某批玩具是否合格,制定检验标准为:多次抛掷该玩具,并记录朝上的面上标记的数字,若各数字出现的频率的极差不超过0.05.则认为该玩具合格.

(1)对某批玩具中随机抽取20件进行检验,将每个玩具各面数字出现频率的极差绘制成茎叶图(如图所示),试估计这批玩具的合格率;
(2)现有该种类玩具一个,将其抛掷100次,并记录朝上的一面标记的数字,得到如下数据:
朝上面的数字 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
次数 | 9 | 7 | 8 | 6 | 10 | 9 | 9 | 8 | 10 | 9 | 7 | 8 |
1)试判定该玩具是否合格;
2)将该玩具抛掷一次,记事件







| ![]() | ![]() | 合计 |
![]() | | | |
![]() | | | |
合计 | | | 100 |
(参考公式及数据:


有人发现一个有趣现象,中国人的邮箱名称里含有数字的比较多,而外国人邮箱里含有数字的比较少,为了研究国籍与邮箱名称里是否含有数字有关,于是我们共收集了124个邮箱名称,其中中国人的64个,外国人的60个,中国人的邮箱中有43个含数字,外国人的邮箱中有27个含数字
(1)请根据以上数据建立一个
列联表;
(2)由以上数据,他有多大把握认为邮箱名称中含有数字与国籍有关?
注:
,其中
(1)请根据以上数据建立一个

(2)由以上数据,他有多大把握认为邮箱名称中含有数字与国籍有关?
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
注:


有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
已知从全部105人中随机抽取1人为优秀的概率为
.
(1)请完成上面的列联表:若按
的可靠性要求,根据列联表的数据,能否认为“成绩与班级有关系”;
(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到10号的概率.

附:

已知从全部105人中随机抽取1人为优秀的概率为

(1)请完成上面的列联表:若按

(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到10号的概率.

附:


为了考察某种药物治疗效果,进行动物试验,得到如下数据:
(1)求出表格中
的值;
(2)是否有95%的把握认为该药物有效。
附:i:
ii:
| 患病 | 未患病 | 总计 |
服用药 | 10 | b | 50 |
未服药 | c | d | n2 |
总计 | 30 | n4 | 100 |
(1)求出表格中

(2)是否有95%的把握认为该药物有效。
附:i:

ii:
![]() | 0.15 | 0.05 | 0.025 | 0.005 |
![]() | 2.072 | 3.841 | 5.024 | 7.879 |
为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了1000名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:
| 愿意做志愿者工作 | 不愿意做志愿者工作 | 合计 |
男大学生 | | | 610 |
女大学生 | | 90 | |
合计 | 800 | | |
(1) 根据题意完成表格;
(2) 是否有的把握认为愿意做志愿者工作与性别有关?
参考公式及数据:,其中
.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,并制成下面的
列联表:

| 及格 | 不及格 | 合计 |
很少使用手机 | 20 | 6 | 26 |
经常使用手机 | 10 | 14 | 24 |
合计 | 30 | 20 | 50 |
(1)判断是否有的把握认为经常使用手机对学习成绩有影响?
(2)从这50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数学题,甲、乙独立解出此题的概率分别为,且
,若
,则此二人适合结为学习上互帮互助的“学习师徒”,记
为两人中解出此题的人数,若
的数学期望
,问两人是否适合结为“学习师徒”?
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
参考公式及数据:,其中
.