刷题首页
题库
高中数学
题干
随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.
年龄(单位:岁)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75)
频数
5
10
15
10
5
5
赞成人数
5
10
12
7
2
1
(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面
列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;
年龄不低于45岁的人数
年龄低于45岁的人数
合计
赞成
不赞成
合计
(Ⅱ)若从年龄在[25,35)和[55,65)的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在[55,65)的概率.
参考数据如下:
附临界值表:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
的观测值:
(其中
)
上一题
下一题
0.99难度 解答题 更新时间:2017-08-14 08:58:17
答案(点此获取答案解析)
同类题1
博鳌亚洲论坛2018年年会于4月8日至11日在海南博鳌举行.为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在右面“性别与会俄语”的
列联表中,
__________.
同类题2
为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在
岁到
岁的人群中随机调查了
人,并得到如图所示的频率分布直方图,在这
人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如表所示:
年龄
不支持“延迟退休年龄政策”的人数
15
5
15
23
17
(1)由频率分布直方图,估计这
人年龄的平均数;(写出必要的表达式)
(2)根据以上统计数据
补全
下面的
列联表,据此表,能否在犯错误的概率不超过
的前提下,认为以
岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?
岁以下
岁以上
总计
不支持
支持
总计
附:临界值表、公式
0.15
0.10
0.050
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
同类题3
进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列“管控令”,该地区交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:
赞同限行
不赞同限行
合计
没有私家车
90
20
110
有私家车
70
40
110
合计
160
60
220
(1)根据上面的列联表判断,能否有99%的把握认为“赞同限行与是否拥有私家车”有关;
(2)为了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1名“没有私家车”人员的概率.
参考公式:
K
2
=
P
(
K
2
≥k
)
0.10
0.05
0.010
0.005
0.001
k
2.706
3..841
6.635
7.879
10.828
同类题4
某学校为了解学生假期参与志愿服务活动的情况,随机调查了
名男生,
名女生,得到他们一周参与志愿服务活动时间的统计数据如右表(单位:人):
超过
小时
不超过
小时
男
女
(1)能否有
的把握认为该校学生一周参与志愿服务活动时间是否超过
小时与性别有关?
(2)以这
名学生参与志愿服务活动时间超过
小时的频率作为该事件发生的概率,现从该校学生中随机抽查
名学生,试估计这
名学生中一周参与志愿服务活动时间超过
小时的人数.
附:
同类题5
2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达
亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为
.
(1)确定
,
,
,
的值,并补全频率分布直方图;
(2)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.
①请将列联表补充完整;
网龄3年以上
网龄不足3年
合计
购物金额在2000元以上
35
购物金额在2000元以下
20
合计
100
②并据此列联表判断,是否有
%的把握认为网购金额超过2000元与网龄在三年以上有关?
参考数据:
(参考公式:
,其中
)
相关知识点
计数原理与概率统计
统计案例
独立性检验
列联表
列联表分析