近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的人进行问卷调查,得到了如下的列联表:
 
患心肺疾病
不患心肺疾病
合计








合计



 
(1)用分层抽样的方法在患心肺疾病的人群中抽人,其中男性抽多少人?
(2)在上述抽取的人中选人,求恰好有名女性的概率;
(3)为了研究心肺疾病是否与性别有关,请计算出统计量,你有多大把握认为心肺疾病与性别有关?
下面的临界值表供参考:
















 
参考公式:,其中.
当前题号:1 | 题型:解答题 | 难度:0.99
我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽样的办法在我校高一年级抽出一个有60人的班级进行问卷调查,得到如下的列联表:
 
喜欢
不喜欢
合计
男生
 
18
 
女生
6
 
 
合计
 
 
60
 
已知从该班随机抽取1人为喜欢的概率是
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.
参考临界值表:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
参考公式:其中
当前题号:2 | 题型:解答题 | 难度:0.99
某研究性学习小组为了调查研究学生玩手机对学习的影响,现抽取了30名学生,得到数据如表:
 
玩手机
不玩手机
合计
学习成绩优秀
 
8
 
学习成绩不优秀
16
 
 
合计
 
 
30
 
已知在全部的30人中随机抽取1人,抽到不玩手机的概率为.
(1)请将2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.005的前提下认为玩手机对学习有影响;
(3)现从不玩手机,学习成绩优秀的8名学生中任意选取两人,对他们的学习情况进行全程跟踪,记甲、乙两名学生被抽到的人数为X,求X的分布列和数学期望.
附:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:3 | 题型:解答题 | 难度:0.99
某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意度进行调查,并随机抽取了其中30名员工(其中16名女员工,14名男员工)的得分,如下表:

47  36  32  48  34  44  43  47  46  41  43  42  50  43  35  49

37  35  34  43  46  36  38  40  39  32  48  33  40  34
 
(Ⅰ)现求得这30名员工的平均得分为40.5分,若规定大于平均得分为“满意”,否则为“不满意”,请完成下列表格:
 
“满意”的人数
“不满意”的人数
合计

 
 
16

 
 
14
合计
 
 
30
 
(Ⅱ)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?
参考数据:

0.10
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828
 
参考公式:
当前题号:4 | 题型:解答题 | 难度:0.99
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元)






频数
5
10
15
10
5
5
赞成人数
4
8
12
5
2
1
 
(1)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“月收入以5500元为分界点对“楼市限购令”的态度有差异;
 
月收入不低于55百元的人数
月收入低于55百元的人数
合计
赞成
a=______________
c=______________
______________
不赞成
b=______________
d=______________
______________
合计
______________
______________
______________
 
(2)试求从年收入位于(单位:百元)的区间段的被调查者中随机抽取2人,恰有1位是赞成者的概率。
参考公式:,其中.
参考值表:

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:5 | 题型:解答题 | 难度:0.99
为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了人进行分析,得到如下列联表(单位:人).
 
经常使用
偶尔使用或不使用
合计
岁及以下



岁以上



合计



 
(1)根据以上数据,能否在犯错误的概率不超过的前提下认为市使用共享单车的情况与年龄有关;
(2)(i)现从所选取的岁以上的网友中,采用分层抽样的方法选取人,再从这人中随机选出人赠送优惠券,求选出的人中至少有人经常使用共享单车的概率;
(ii)将频率视为概率,从市所有参与调查的网友中随机选取人赠送礼品,记其中经常使用共享单车的人数为,求的数学期望和方差.
参考公式:,其中.
参考数据:












 
当前题号:6 | 题型:解答题 | 难度:0.99
在吸烟与患肺病是否相关的判断中,有下面的说法:
(1)从独立性分析可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有的可能性使得推断错误.
(2)从独立性分析可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有的可能患有肺病;
(3)若,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;
其中说法正确的是________
当前题号:7 | 题型:填空题 | 难度:0.99
国家放开二胎政策后,不少家庭开始生育二胎,随机调查110名性别不同且为独生子女的高中生,其中同意生二胎的高中生占随机调查人数的,统计情况如下表:
 
同意
不同意
合计
男生

20
 
女生
20

 
合计
 
 
110
 
(l)求的值
(2)根据以上数据,能否有99%的把握认为同意生二胎与性别有关?请说明理由.
附:

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:8 | 题型:解答题 | 难度:0.99
为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取20名学生的成绩进行统计分析,结果如表:(记成绩不低于120分者为“成绩优秀”)
分数
[80,90)
[90,100)
[100,110)
[110,120)
[120,130)
[130,140)
[140,150]
甲班频数
1
1
4
5
4
3
2
乙班频数
0
1
1
2
6
6
4
 
(1)由以上统计数据填写下面的2×2列联表,并判断是否有95%以上的把握认为“成绩优秀与教学方式有关”?
 
甲班
乙班
总计
成绩优秀
 
 
 
成绩不优秀
 
 
 
总计
 
 
 
 
(2)现从上述样本“成绩不优秀”的学生中,抽取3人进行考核,记“成绩不优秀”的乙班人数为X,求X的分布列和期望.
参考公式:,其中
临界值表
P(
0.100
0.050
0.010
0.001

2.706
3.841
6.635
10.828
 
当前题号:9 | 题型:解答题 | 难度:0.99
为了了解高三学生的心理健康状况,某校心理健康咨询中心对该校高三学生的睡眠状况进行抽样调查,随机抽取了50名男生和50名女生,统计了他们进入高三后的第一个月平均每天睡眠时间,得到如下频数分布表.规定:“平均每天睡眠时间大于等于8小时”为“睡眠充足”,“平均每天睡眠时间小于8小时”为“睡眠不足”.
高三学生平均每天睡眠时间频数分布表
睡眠时间(小时)
[5,6)
[6,7)
[7,8)
[8,9)
[9,10)
男生(人)
4
18
10
12
6
女生(人)
2
20
16
8
4
 
(Ⅰ)请将下面的列联表补充完整:
 
睡眠充足
睡眠不足
合计
男生(人)
 
32
 
女生(人)
12
 
 
总计
 
 
100
 
(Ⅱ)根据已完成的2×2列联表,判断是否有90%的把握认为“睡眠是否充足与性别有关”?
附:参考公式
P(K2≥k)
0.100
0.050
0.010
0.001
k
2.706
3.841
6.636
10.828
 
当前题号:10 | 题型:解答题 | 难度:0.99