- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对一批产品的内径进行抽查,已知被抽查的产品的数量为200,所得内径大小统计如表所示:

(Ⅰ)以频率估计概率,若从所有的这批产品中随机抽取3个,记内径在
的产品个数为X,X的分布列及数学期望
;
(Ⅱ)已知被抽查的产品是由甲、乙两类机器生产,根据如下表所示的相关统计数据,是否有
的把握认为生产产品的机器种类与产品的内径大小具有相关性.

参考公式:
,(其中
为样本容量).

(Ⅰ)以频率估计概率,若从所有的这批产品中随机抽取3个,记内径在


(Ⅱ)已知被抽查的产品是由甲、乙两类机器生产,根据如下表所示的相关统计数据,是否有


参考公式:


![]() | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
第一次大考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于
分为优秀,
分以下为非优秀,统计成绩后,得到如下
列联表,且已知在甲、乙两个文科班全部
人中随机抽取
人为优秀的概率为
.
(I)请完成
列联表:
(Ⅱ)根据列联表的数据能否在犯错误的概率不超过
的前提下认为成绩与班级有关系?
参考公式和临界值表:
,其中
.






(I)请完成

| 优秀 | 非优秀 | 合计 |
甲班 | ![]() | | |
乙班 | | ![]() | |
合计 | | | ![]() |
(Ⅱ)根据列联表的数据能否在犯错误的概率不超过

参考公式和临界值表:


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:
则有( )的把握认为经常使用手机对数学学习成绩有影响.
参考公式:
,其中
| 及格 | 不及格 | 合计 |
很少使用手机 | 20 | 5 | 25 |
经常使用手机 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
则有( )的把握认为经常使用手机对数学学习成绩有影响.
参考公式:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.97.5% | B.99% | C.99.5% | D.99.9% |
某市对公共场合禁烟进行网上调查,在参与调查的2500名男性市民中有1000名持支持态度,2500名女性市民中有2000人持支持态度,在运用数据说明市民对在公共场合禁烟是否支持与性别有关系时,用什么方法最有说明力( )
A.平均数与方差 | B.回归直线方程 | C.独立性检验 | D.概率 |
为了解重庆市高中学生在面对新高考模式“3+1+2”的科目选择中,物理与历史的二选一是否与性别有关,某高中随机对该校50名高一学生进行了问卷调查得到相关数据如下列联表:
己知在这50人中随机抽取1人,抽到选物理的人的概率为
。
(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为物理与历史的二选一与性别有关?
(参考公式
,其中
为样本容量)
(2)己知在选物理的10位女生中有3人选择了化学、地理,有5人选择了化学、生物,有2人选择了生物、地理,现从这10人中抽取3人进行更详细的学科意愿调查,记抽到的3人中选择化学的有X人,求随机变量X的分布列及数学期望。
| 选物理 | 选历史 | 合计 |
男生 | | 5 | |
女生 | 10 | | |
合计 | | | |
己知在这50人中随机抽取1人,抽到选物理的人的概率为

(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为物理与历史的二选一与性别有关?
![]() | 0.15 | 0.10 | 0.05 | 0.01 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(参考公式


(2)己知在选物理的10位女生中有3人选择了化学、地理,有5人选择了化学、生物,有2人选择了生物、地理,现从这10人中抽取3人进行更详细的学科意愿调查,记抽到的3人中选择化学的有X人,求随机变量X的分布列及数学期望。
为了解本届高二学生对文理科的选择与性别是否有关,现随机从高二的全体学生中抽取了若干名学生,据统计,男生35人,理科生40人,理科男生30人,文科女生15人。
(1)完成如下2×2列联表,判断是否有99.9%的把握认为本届高二学生“对文理科的选择与性别有关”?
(2)已采用分层抽样的方式从样本的所有女生中抽取了5人,现从这5人中随机抽取2人参加座谈会,求抽到的2人恰好一文一理的概率。
(参考公式
,其中
为样本容量)
(1)完成如下2×2列联表,判断是否有99.9%的把握认为本届高二学生“对文理科的选择与性别有关”?
| 男生 | 女生 | 合计 |
文科 | | | |
理科 | | | |
合计 | | | |
(2)已采用分层抽样的方式从样本的所有女生中抽取了5人,现从这5人中随机抽取2人参加座谈会,求抽到的2人恰好一文一理的概率。
![]() | 0.15 | 0.10 | 0.05 | 0.01 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(参考公式


2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.
(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的
列联表.请将列联表补充完整,并判断是否有
的把握认为选择科目与性别有关?说明你的理由;
(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为
,求
的分布列及数学期望.
附参考公式及数据:
,其中
.
(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的


(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为


| 选择“物理” | 选择“地理” | 总计 |
男生 | | 10 | |
女生 | 25 | | |
总计 | | | |
附参考公式及数据:


![]() | 0.05 | 0.01 |
![]() | 3.841 | 6.635 |
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了
人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
(1)由以上统计数据填下面
列联表,并问是否有
的把握认为“月收入以
元为分界点对“楼市限购令”的态度有差异;
(2)若对在
、
的被调查者中各随机选取两人进行追踪调查,记选中的
人中不赞成“楼市限购令”的人数为
,求随机变量
的分布列及数学期望.
参考公式:
,其中
.
参考值表:

月收入(单位百元) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
赞成人数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)由以上统计数据填下面



| 月收入不低于![]() | 月收入低于![]() | 合计 |
赞成 | ![]() | ![]() | ______________ |
不赞成 | ![]() | ![]() | ______________ |
合计 | ______________ | ______________ | ______________ |
(2)若对在





参考公式:


参考值表:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
某机构需掌握55岁人群的睡眠情况,通过随机抽查110名性别不同的55岁的人的睡眠质量情况,得到如下列联表
由
得,
.
根据
表
得到下列结论,正确的是()
| 男 | 女 | 总计 |
好 | 40 | 20 | 60 |
不好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由


根据

![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
得到下列结论,正确的是()
A.有![]() |
B.有![]() |
C.在犯错误的概率不超过0.01的前提下,认为“睡眠质量与性别有关” |
D.在犯错误的概率不超过0.01的前提下,认为“睡眠质量与性别无关” |
某学生对其亲属
人的饮食习惯进行一次调查,并用如图所示的茎叶图表示
人的饮食指数(说明:图中饮食指数低于
的人,饮食以蔬菜为主;饮食指数高于
的人,饮食以肉类为主)

(1)根据以上数据完成下列
列联表.
(2)能否有
的把握认为其亲属的饮食习惯与年龄有关?并写出简要分析.
参考公式:
,其中





(1)根据以上数据完成下列

(2)能否有

| 主食蔬菜 | 主食肉食 | 总计 | |||||
50岁以下 | | | | |||||
50岁以上 | | | | |||||
总计 | | | | |||||
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
参考公式:

