- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某媒体对“男女延迟退休″这一公众关注的问题进行名意调查,如表是在某单位得到的数据:
(I)能否有97.5%的把握认为对这一问题的看法与性别有关?
(II)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述发言,设发言的女士人数为X,求X的分布列和期望.
参考公式:
| 赞同 | 反对 | 合计 |
男 | 50 | 150 | 200 |
女 | 30 | 170 | 200 |
合计 | 80 | 320 | 400 |
(I)能否有97.5%的把握认为对这一问题的看法与性别有关?
(II)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述发言,设发言的女士人数为X,求X的分布列和期望.
参考公式:

![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
为了判定两个分类变量
和
是否有关系,应用
独立性检验法算得
的观测值为5,又已知
,
,则下列说法正确的是( )






A.有![]() ![]() ![]() |
B.有99%以上的把握认为“![]() ![]() |
C.有95%以上的把握认为“![]() ![]() |
D.有95%以上的把握认为“![]() ![]() |
为了调查民众对国家实行“新农村建设”政策的态度,现通过网络问卷随机调查了年龄在20周岁至80周岁的100人,他们年龄频数分布和支持“新农村建设”人数如下表:
(1)根据上述统计数据填下面的
列联表,并判断是否有
的把握认为以50岁为分界点对“新农村建设”政策的支持度有差异;
(2)为了进一步推动“新农村建设”政策的实施,中央电视台某节目对此进行了专题报道,并在节目最后利用随机拨号的形式在全国范围内选出4名幸运观众(假设年龄均在20周岁至80周岁内),给予适当的奖励.若以频率估计概率,记选出4名幸运观众中支持“新农村建设”人数为
,试求随机变量
的分布列和数学期望.
参考数据:
参考公式:
,其中
.
年龄 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 20 | 30 | 20 | 10 | 10 |
支持“新农村建设” | 3 | 11 | 26 | 12 | 6 | 2 |
(1)根据上述统计数据填下面的


| 年龄低于50岁的人数 | 年龄不低于50岁的人数 | 合计 |
支持 | | | |
不支持 | | | |
合计 | | | |
(2)为了进一步推动“新农村建设”政策的实施,中央电视台某节目对此进行了专题报道,并在节目最后利用随机拨号的形式在全国范围内选出4名幸运观众(假设年龄均在20周岁至80周岁内),给予适当的奖励.若以频率估计概率,记选出4名幸运观众中支持“新农村建设”人数为


参考数据:
![]() | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:


某学生对其亲属30人的饮食习惯进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).

(1)根据以上数据完成下列
列联表:
(2)能否有99%的把握认为其亲属的饮食习惯与年龄有关?并写出简要分析.
参考公式和数据:
,
.

(1)根据以上数据完成下列

| 主食蔬菜 | 主食肉类 | 总计 |
50岁以下 | | | |
50岁以上 | | | |
总计 | | | |
(2)能否有99%的把握认为其亲属的饮食习惯与年龄有关?并写出简要分析.
参考公式和数据:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
为考查某种药物预防疾病的效果,随机抽查了50只服用药的动物和50只未服用药的动得知服用药的动物中患病的比例是
,未服用药的动物中患病的比例为
.
(I)根据以上数据完成下列2×2列联表:
(II)能否有99%的把握认为药物有效?并说明理由.
附:



(I)根据以上数据完成下列2×2列联表:
| 患病 | 未患病 | 总计 |
服用药 | | | |
没服用药 | | | |
总计 | | | |
(II)能否有99%的把握认为药物有效?并说明理由.
附:
![]() | … | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 |
![]() | … | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |

某大学学生会为了调查了解该校大学生参与校健身房运动的情况,随机选取了100位大学生进行调查,调查结果统计如下:
(1)根据已知数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过0.005的前提下认为参与校健身房运动与性别有关?请说明理由.
附:
,其中
.
| 参与 | 不参与 | 总计 |
男大学生 | 30 | | |
女大学生 | | | 50 |
总计 | 45 | | 100 |
(1)根据已知数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过0.005的前提下认为参与校健身房运动与性别有关?请说明理由.
附:


![]() | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |





| 关注 | 不关注 | 合计 |
年轻人 | ![]() | | |
中老年人 | | | |
合计 | ![]() | ![]() | ![]() |
(1)根据已知条件完成上面的


(2)现采用分层抽样的方法从中老年人中选取





附参考公式:


![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
某社区为了解居民参加体育锻炼的情况,从该社区随机抽取了18名男性居民和12名女性居民,对他们参加体育锻炼的情况进行问卷调查.现按是否参加体育锻炼将居民分成两类:甲类(不参加体育锻炼)、乙类(参加体育锻炼),结果如下表:
(Ⅰ)根据上表中的统计数据,完成下面的
列联表;
(Ⅱ)通过计算判断是否有90%的把握认为参加体育锻炼与否与性别有关?
附:
,其中
.
| 甲类 | 乙类 |
男性居民 | 3 | 15 |
女性居民 | 6 | 6 |
(Ⅰ)根据上表中的统计数据,完成下面的

| 男性居民 | 女性居民 | 总计 |
不参加体育锻炼 | | | |
参加体育锻炼 | | | |
总计 | | | |
(Ⅱ)通过计算判断是否有90%的把握认为参加体育锻炼与否与性别有关?
附:


![]() | 0.10 | 0.05 | 0.01 |
![]() | 2.706 | 3.841 | 6.635 |
在对人们的休闲方式的一次调查中,共调查了110人,其中女性50人,男性60人.女性中有30人主要的休闲方式是看电视,另外20人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外40人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2列联表;
(2)判断性别与休闲方式是否有关系.
下面临界值表供参考:
(参考公式:K2=
)
(1)根据以上数据建立一个2×2列联表;
(2)判断性别与休闲方式是否有关系.
下面临界值表供参考:
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
(参考公式:K2=

每年的
月
日是全国爱牙日,为了迎接这一节日,某地区卫生部门成立了调查小组,调查“常吃零食与患龋齿的关系”,对该地区小学六年级
名学生进行检查,按患龋齿的不患龋齿分类,得汇总数据:不常吃零食且不患龋齿的学生有
名,常吃零食但不患龋齿的学生有
名,不常吃零食但患齲齿的学生有
名.
(1)完成答卷中的
列联表,问:能否在犯错率不超过
的前提下,认为该地区学生的常吃零食与患龋齿有关系?
(2)
名区卫生部门的工作人员随机分成两组,每组
人,一组负责数据收集,另一组负责数据处理,求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.
附:






(1)完成答卷中的


(2)


附:

![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |