针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数,若有的把握认为是否喜欢抖音和性别有关,则男生至少有(   )
参考公式:

0.10
0.05
0.025
0.010
0.005
0.001

2.706
3.841
5.024
6.635
7.879
10.828
 
A.12人B.18人C.24人D.30人
当前题号:1 | 题型:单选题 | 难度:0.99
某仪器配件质量采用值进行衡量,某研究所采用不同工艺,开发甲、乙两条生产线生产该配件,为调查两条生产线的生产质量,检验员每隔分别从两条生产线上随机抽取一个配件,测量并记录其值,下面是甲、乙两条生产线各抽取的30个配件值茎叶图.

经计算得,其中分别为甲,乙两生产线抽取的第个配件的值.
(1)若规定的产品质量等级为合格,否则为不合格.已知产品不合格率需低于,生产线才能通过验收,利用样本估计总体,分析甲,乙两条生产线是否可以通过验收;
(2)若规定时,配件质量等级为优等,否则为不优等,试完成下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下认为“配件质量等级与生产线有关”?
 
产品质量等级优等
产品质量等级不优等
合计
甲生产线
 
 
 
乙生产线
 
 
 
合计
 
 
 
 
附:

0.10
0.05
0.01
0.001

2.706
3.841
6.635
10.828
 
当前题号:2 | 题型:解答题 | 难度:0.99
某企业为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取100件产品作为样本称出它们的质量(单位:毫克),质量值落在的产品为合格品,否则为不合格品.如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.
产品质量/毫克
频数
(165,175]
3
(175,185]
2
(185,195]
21
(195,205]
36
(205,215]
24
(215,225]
9
(225,235]
5
 
(Ⅰ)根据乙流水线样本的频率分布直方图,求乙流水线样本质量的中位数(结果保留整数);
(Ⅱ)从甲流水线样本中质量在的产品中任取2件产品,求两件产品中恰有一件合格品的概率;
 
甲流水线
乙流水线
总计
合格品
 
 
 
不合格品
 
 
 
总计
 
 
 
 
(Ⅲ)由以上统计数据完成下面2×2列联表,能否在犯错误的概率不超过0.15的前提下认为产品的包装合格与两条自动包装流水线的选择有关?
下面临界值表仅供参考:
PK2k
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
参考公式:,其中na+b+c+d
当前题号:3 | 题型:解答题 | 难度:0.99
如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分,为了解网络外卖在A市的普及情况,A市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到如表:(单位:人)
 
经常使用网络外卖
偶尔或不用网络外卖
合计
男性
50
50
100
女性
60
40
100
合计
110
90
200
 
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为A市使用网络外卖的情况与性别有关?
(2)将频率视为概率,从A市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为X,求X的数学期望和方差.
参考公式:,其中
参考数据:
















 
当前题号:4 | 题型:解答题 | 难度:0.99
为了了解甲、乙两校学生自主招生通过情况,从甲校抽取60人,从乙校抽取50人进行分析.
 
通过人数
末通过人数
总计
甲校
 
 
 
乙校
30
 
 
总计
 
60
 
 
(1)根据题目条件完成上面2×2列联表,并据此判断是否有99%的把握认为自主招生通过情况与学生所在学校有关;
(2)现已知甲校ABC三人在某大学自主招生中通过的概率分别为,用随机变量X表示ABC三人在该大学自主招生中通过的人数,求X的分布列及期望EX).

参考公式:.

参考数据:

0.15

0.10

0.05

0.025

0.01

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

 
当前题号:5 | 题型:解答题 | 难度:0.99
芯片堪称“国之重器”其制作流程异常繁琐,制作芯片核心部分首先需要制造单晶的晶圆,此过程主要是加入碳,以氧化还原的方式,将氧化硅转换为高纯度的硅.为达到这一高标准要求,研究工作人员曾就是否需采用西门子制程()这一工艺技术进行了反复比较,在一次实验中,工作人员对生产出的50片单晶的晶圆进行研究,结果发现使用了该工艺的30片单晶的晶圆中有28片合格,没有使用该工艺的20片单晶的晶圆中有12片合格.
(1)请填写22列联表并判断:这次实验是否有99.5%的把握认为单晶的晶圆的制作效果与使用西门子制程()这一工艺技术有关?
 
使用工艺
不使用工艺
合格
合格
 
 
 
不合格
 
 
 
合计
 
 
50
 
(2)在得到单晶的晶圆后,接下来的生产制作还前对单晶的晶圆依次进行金属溅镀,涂布光阻,蚀刻技术,光阻去除这四个环节的精密操作,进而得到多晶的晶圆,生产出来的多晶的晶圆经过严格的质检,确定合格后才能进入下一个流程,如果生产出来的多晶的晶圆在质检中不合格,那么必须依次对前四个环节进行技术检测并对所有的出错环节进行修复才能成为合格品.在实验的初期,由于技术的不成熟,生产制作的多晶的晶圆很难达到理想状态,研究人员根据以往的数据与经验得知在实验生产多晶的晶圆的过程中,前三个环节每个环节生产正常的概率为,第四个环节生产正常的概率为,且每个环节是否生产正常是相互独立的.前三个环节每个环节出错需要修复的费用均为20元,第四环节出错需要修复的费用为10元.问:一次实验生产出来的多晶的晶圆要成为合格品平均还需要消耗多少元费用?(假设质检与检测过程不产生费用)
参考公式:
参考数据:

0.15
0.10
0.05
0.025
0.01
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:6 | 题型:解答题 | 难度:0.99
为了研究广大市民对共享单车的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:
每周使用次数
1次
2次
3次
4次
5次
6次及以上

4
3
3
7
8
30

6
5
4
4
6
20
合计
10
8
7
11
14
50
 
认为每周使用超过3次的用户为“喜欢骑共享单车”.
(1)分别估算男、女“喜欢骑共享单车”的概率;
(2)请完成下面的2×2列联表,并判断能否有95%把握,认为是否“喜欢骑共享单车”与性别有关.
 
不喜欢骑共享单车
喜欢骑共享单车
合计

 
 
 

 
 
 
合计
 
 
 
 
附表及公式:,其中.

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:7 | 题型:解答题 | 难度:0.99
某地为了调查市民对“一带一路”倡议的了解程度,随机选取了名年龄在岁至岁的市民进行问卷调查,并通过问卷的分数把市民划分为了解“一带一路”倡议与不了解“一带一路”倡议两类.得到下表:
年龄




调查人数/名




了解“一带一路”倡议/名




 
I)完成下面的列联表,并判断是否有的把握认为以岁为分界点对“一带一路”倡议的了解有差异(结果精确到);
 
年龄低于岁的人数
年龄不低于岁的人数
合计
了解
 
 
 
不了解
 
 
 
合计
 
 
 
 
(Ⅱ)以频率估计概率,若在该地选出名市民(年龄在岁至岁),记名市民中了解“一带一路”倡议的人数为,求随机变量的分布列,数学期望和方差.
附:












 
,其中.
当前题号:8 | 题型:解答题 | 难度:0.99
随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公司进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:
 
经常进行网络购物
偶尔或从不进行网络购物
合计
男性
50
50
100
女性
60
40
100
合计
110
90
200
 
(1)依据上述数据,能否在犯错误的概率不超过的前提下认为该市市民进行网络购物的情况与性别有关?
(2)现从所抽取的女性网民中利用分层抽样的方法再抽取人,从这人中随机选出人赠送网络优惠券,求选出的人中至少有两人是经常进行网络购物的概率;
(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取人赠送礼物,记经常进行网络购物的人数为,求的期望和方差.
附:,其中












 
当前题号:9 | 题型:解答题 | 难度:0.99
天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
 
优秀
非优秀
合计
甲班
10
 
 
乙班
 
30
 
合计
 
 
110
 
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.
参考公式与临界值表:

0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828
 
当前题号:10 | 题型:解答题 | 难度:0.99