随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站月促销费用(万元)和产品销量(万件)的具体数据.
月份
1
2
3
4
5
6
7
8
促销费用
2
3
6
10
13
21
15
18
产品销量
1
1
2
3
3.5
5
4
4.5
 
(1)根据数据可知具有线性相关关系,请建立关于的回归方程(系数精确到);
(2)已知月份该购物网站为庆祝成立周年,特定制奖励制度:用(单位:件)表示日销量,若,则每位员工每日奖励元;若,每位员工每日奖励元;若,则每位员工每日奖励元.现已知该网站月份日销量服从正态分布,请你计算某位员工当月奖励金额总数大约为多少元.(当月奖励金额总数精确到百分位)
参考数据:,其中分别为第个月的促销费用和产品销量,.
参考公式:①对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为.
②若随机变量服从正态分布,则.
当前题号:1 | 题型:解答题 | 难度:0.99
某工厂某产品近几年的产量统计如下表:
年份
2013
2014
2015
2016
2017
2018
年份代码
1
2
3
4
5
6
年产量(万件)
6.6
6.7
7
7.1
7.2
7.4
 
(1)根据表中数据,求关于的线性回归方程
(2)若近几年该产品每千克的价格(单位:元)与年产量满足的函数关系式为,且每年该产品都能售完.
①根据(1)中所建立的回归方程预测该地区年该产品的产量;
②当为何值时,销售额最大?
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.
当前题号:2 | 题型:解答题 | 难度:0.99
假设关于某设备的使用年限(年)和所支出的年平均维修费用(万元)(即维修费用之和除以使用年限),有如下的统计资料:
使用年限
2
3
4
5
6
维修费用
2.2
3.8
5.5
6.5
7.0
 
(1)画出散点图;
(2)求关于的线性回归方程;
(3)估计使用年限为10年时所支出的年平均维修费用是多少?
参考公式: 
当前题号:3 | 题型:解答题 | 难度:0.99
假设关于某设备的使用年限(年)和所支出的年平均维修费用(万元)(即维修费用之和除以使用年限),有如下的统计资料:
使用年限
2
3
4
5
6
维修费用
2.2
3.8
5.5
6.5
7.0
 
(1)画出散点图;
(2)求关于的线性回归方程;
(3)估计使用年限为10年时所支出的年平均维修费用是多少?
参考公式: 
当前题号:4 | 题型:解答题 | 难度:0.99
某商场营销人员对某商品进行市场营销调查,发现每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过统计得到下表:
回馈点数
1
2
3
4
5
销量(百件)/天
0.5
0.6
1
1.4
1.7
 
(1)经分析发现,可用线性回归模型拟合该商品每天的销量(百件)与返还点数之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测若回馈6个点时该商品每天销量;
(2)已知节日期间某地拟购买该商品的消费群体十分庞大,营销调研机构对其中的200名消费者的返点数额的心理预期值进行了抽样调查,得到如下频数表:
返还点数预期值区间






频数
20
60
60
30
20
10
 
(i)求这200位拟购买该商品的消费者对返点点数的心理预期值的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0.1);
(ii)将对返点点数的心理预期值在的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,设抽出的3人中“欲望紧缩型”消费者的人数为随机变量,求的分布列及数学期望.
参考公式及数据:①;②.
当前题号:5 | 题型:解答题 | 难度:0.99
随着我国经济的发展,居民的储蓄存款逐年增长,设某地区城乡居民人民币储蓄存款(单位:亿元)的数据如下:

(1)求关于的线性回归方程;
(2)2018年城乡居民储蓄存款前五名中,有三男和两女.现从这5人中随机选出2人参加某访谈节目,求选中的2人性别不同的概率.
附:回归直线的斜率和截距的最小二乘估计公式分别为: .
当前题号:6 | 题型:解答题 | 难度:0.99
随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(单位:亿元)的数据如下:
年份
2012
2013
2014
2015
2016
2017
2018
年份代号
1
2
3
4
5
6
7
储蓄存款
3.4
3.6
4.5
4.9
5.5
6.1
7.0
 
(1)求关于的线性回归方程;
(2)2018年城乡居民储蓄存款前五名中,有三男和两女.现从这5人中随机选出2人参加某访谈节目,求选中的2人性别不同的概率.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
当前题号:7 | 题型:解答题 | 难度:0.99
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)
4
5
6
7
8
9
销量y(件)
90
84
83
80
75
68
 
由表中数据,求得线性回归方程为.若在这些样本点中任取一点,则它在回归直线左下方的概率为(   )
A.B.C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司2014-2018年的相关数据如下表所示:
年份
2014
2015
2016
2017
2018
年生产台数x(万台)
2
4
5
6
8
该产品的年利润y(百万元)
30
40
60
50
70
年返修台数(台)
19
58
45
71
70
 
注:年返修率
(1)从该公司2014-2018年的相关数据中任意选取年的数据,求这年中至少有年生产部门考核优秀的概率.
(2)利用上表中五年的数据求出年利润 (百万元)关于年生产台数(万台)的回归直线方程是①.现该公司计划从2019年开始转型,并决定2019年只生产该产品万台,且预计2019年可获利 (百万元);但生产部门发现,若用预计的2019年的数据与2014-2018年中考核优秀年份的数据重新建立回归方程,只有当重新估算的的值(精确到),相对于①中的值的误差的绝对值都不超过时,2019年该产品返修率才可低于千分之一,若生产部门希望2019年考核优秀,能否同意2019年只生产该产品万台?请说明理由.
(参考公式:相对的误差为
当前题号:9 | 题型:解答题 | 难度:0.99
某手机厂商在销售200万台某型号手机时开展“手机碎屏险”活动、活动规则如下:用户购买该型号手机时可选购“手机碎屏险”,保费为元,若在购机后一年内发生碎屏可免费更换一次屏幕.该手机厂商将在这万台该型号手机全部销售完毕一年后,在购买碎屏险且购机后一年内未发生碎屏的用户中随机抽取名,每名用户赠送元的红包,为了合理确定保费的值,该手机厂商进行了问卷调查,统计后得到下表(其中表示保费为元时愿意购买该“手机碎屏险”的用户比例);
(1)根据上面的数据求出关于的回归直线方程;
(2)通过大数据分析,在使用该型号手机的用户中,购机后一年内发生碎屏的比例为.已知更换一次该型号手机屏幕的费用为元,若该手机厂商要求在这次活动中因销售该“手机碎屏险”产生的利润不少于万元,能否把保费定为5元?
x
10
20
30
40
50
y
0.79
0.59
0.38
0.23
0.01
 
参考公式:回归方程中斜率和截距的最小二乘估计分别为

参考数据:表中的5个值从左到右分别记为,相应的值分别记为,经计算有,其中
当前题号:10 | 题型:解答题 | 难度:0.99