- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站
年
月促销费用
(万元)和产品销量
(万件)的具体数据.
(1)根据数据可知
与
具有线性相关关系,请建立
关于
的回归方程
(系数精确到
);
(2)已知
月份该购物网站为庆祝成立
周年,特定制奖励制度:用
(单位:件)表示日销量,若
,则每位员工每日奖励
元;若
,每位员工每日奖励
元;若
,则每位员工每日奖励
元.现已知该网站
月份日销量
服从正态分布
,请你计算某位员工当月奖励金额总数大约为多少元.(当月奖励金额总数精确到百分位)
参考数据:
,
,其中
分别为第
个月的促销费用和产品销量,
.
参考公式:①对于一组数据
,其回归方程
的斜率和截距的最小二乘估计分别为
,
.
②若随机变量
服从正态分布
,则
,
.




月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促销费用![]() | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
产品销量![]() | 1 | 1 | 2 | 3 | 3.5 | 5 | 4 | 4.5 |
(1)根据数据可知






(2)已知












参考数据:





参考公式:①对于一组数据




②若随机变量




某工厂某产品近几年的产量统计如下表:
(1)根据表中数据,求
关于
的线性回归方程
;
(2)若近几年该产品每千克的价格
(单位:元)与年产量
满足的函数关系式为
,且每年该产品都能售完.
①根据(1)中所建立的回归方程预测该地区
年该产品的产量;
②当
为何值时,销售额
最大?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代码![]() | 1 | 2 | 3 | 4 | 5 | 6 |
年产量![]() | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(1)根据表中数据,求



(2)若近几年该产品每千克的价格



①根据(1)中所建立的回归方程预测该地区

②当


附:对于一组数据




假设关于某设备的使用年限
(年)和所支出的年平均维修费用
(万元)(即维修费用之和除以使用年限),有如下的统计资料:
(1)画出散点图;
(2)求
关于
的线性回归方程;
(3)估计使用年限为10年时所支出的年平均维修费用是多少?
参考公式:


使用年限![]() | 2 | 3 | 4 | 5 | 6 |
维修费用![]() | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)画出散点图;
(2)求


(3)估计使用年限为10年时所支出的年平均维修费用是多少?
参考公式:

假设关于某设备的使用年限
(年)和所支出的年平均维修费用
(万元)(即维修费用之和除以使用年限),有如下的统计资料:
(1)画出散点图;
(2)求
关于
的线性回归方程;
(3)估计使用年限为10年时所支出的年平均维修费用是多少?
参考公式:


使用年限![]() | 2 | 3 | 4 | 5 | 6 |
维修费用![]() | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)画出散点图;
(2)求


(3)估计使用年限为10年时所支出的年平均维修费用是多少?
参考公式:

某商场营销人员对某商品
进行市场营销调查,发现每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过统计得到下表:
(1)经分析发现,可用线性回归模型拟合该商品每天的销量
(百件)与返还点数
之间的相关关系.请用最小二乘法求
关于
的线性回归方程
,并预测若回馈6个点时该商品每天销量;
(2)已知节日期间某地拟购买该商品的消费群体十分庞大,营销调研机构对其中的200名消费者的返点数额的心理预期值进行了抽样调查,得到如下频数表:
(i)求这200位拟购买该商品的消费者对返点点数的心理预期值的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0.1);
(ii)将对返点点数的心理预期值在
和
的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,设抽出的3人中“欲望紧缩型”消费者的人数为随机变量
,求
的分布列及数学期望.
参考公式及数据:①
,
;②
.

回馈点数![]() | 1 | 2 | 3 | 4 | 5 |
销量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)经分析发现,可用线性回归模型拟合该商品每天的销量





(2)已知节日期间某地拟购买该商品的消费群体十分庞大,营销调研机构对其中的200名消费者的返点数额的心理预期值进行了抽样调查,得到如下频数表:
返还点数预期值区间 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求这200位拟购买该商品的消费者对返点点数的心理预期值的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0.1);
(ii)将对返点点数的心理预期值在




参考公式及数据:①



随着我国经济的发展,居民的储蓄存款逐年增长,设某地区城乡居民人民币储蓄存款
(单位:亿元)的数据如下:

(1)求
关于
的线性回归方程;
(2)2018年城乡居民储蓄存款前五名中,有三男和两女.现从这5人中随机选出2人参加某访谈节目,求选中的2人性别不同的概率.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,
.


(1)求


(2)2018年城乡居民储蓄存款前五名中,有三男和两女.现从这5人中随机选出2人参加某访谈节目,求选中的2人性别不同的概率.
附:回归直线的斜率和截距的最小二乘估计公式分别为:


随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款
(单位:亿元)的数据如下:
(1)求
关于
的线性回归方程;
(2)2018年城乡居民储蓄存款前五名中,有三男和两女.现从这5人中随机选出2人参加某访谈节目,求选中的2人性别不同的概率.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,
.

年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
储蓄存款![]() | 3.4 | 3.6 | 4.5 | 4.9 | 5.5 | 6.1 | 7.0 |
(1)求


(2)2018年城乡居民储蓄存款前五名中,有三男和两女.现从这5人中随机选出2人参加某访谈节目,求选中的2人性别不同的概率.
附:回归直线的斜率和截距的最小二乘估计公式分别为:


某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
由表中数据,求得线性回归方程为
.若在这些样本点中任取一点,则它在回归直线左下方的概率为( )
单价x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
由表中数据,求得线性回归方程为

A.![]() | B.![]() | C.![]() | D.![]() |
某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司2014-2018年的相关数据如下表所示:
注:年返修率
(1)从该公司2014-2018年的相关数据中任意选取
年的数据,求这
年中至少有
年生产部门考核优秀的概率.
(2)利用上表中五年的数据求出年利润
(百万元)关于年生产台数
(万台)的回归直线方程是
①.现该公司计划从2019年开始转型,并决定2019年只生产该产品
万台,且预计2019年可获利
(百万元);但生产部门发现,若用预计的2019年的数据与2014-2018年中考核优秀年份的数据重新建立回归方程,只有当重新估算的
的值(精确到
),相对于①中
的值的误差的绝对值都不超过
时,2019年该产品返修率才可低于千分之一,若生产部门希望2019年考核优秀,能否同意2019年只生产该产品
万台?请说明理由.
(参考公式:

,
相对
的误差为
)
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生产台数x(万台) | 2 | 4 | 5 | 6 | 8 |
该产品的年利润y(百万元) | 30 | 40 | 60 | 50 | 70 |
年返修台数(台) | 19 | 58 | 45 | 71 | 70 |
注:年返修率

(1)从该公司2014-2018年的相关数据中任意选取



(2)利用上表中五年的数据求出年利润










(参考公式:






某手机厂商在销售200万台某型号手机时开展“手机碎屏险”活动、活动规则如下:用户购买该型号手机时可选购“手机碎屏险”,保费为
元,若在购机后一年内发生碎屏可免费更换一次屏幕.该手机厂商将在这
万台该型号手机全部销售完毕一年后,在购买碎屏险且购机后一年内未发生碎屏的用户中随机抽取
名,每名用户赠送
元的红包,为了合理确定保费
的值,该手机厂商进行了问卷调查,统计后得到下表(其中
表示保费为
元时愿意购买该“手机碎屏险”的用户比例);
(1)根据上面的数据求出
关于
的回归直线方程;
(2)通过大数据分析,在使用该型号手机的用户中,购机后一年内发生碎屏的比例为
.已知更换一次该型号手机屏幕的费用为
元,若该手机厂商要求在这次活动中因销售该“手机碎屏险”产生的利润不少于
万元,能否把保费
定为5元?
参考公式:回归方程
中斜率和截距的最小二乘估计分别为
,
,
参考数据:表中
的5个值从左到右分别记为
,相应的
值分别记为
,经计算有
,其中
,
.







(1)根据上面的数据求出


(2)通过大数据分析,在使用该型号手机的用户中,购机后一年内发生碎屏的比例为




x | 10 | 20 | 30 | 40 | 50 |
y | 0.79 | 0.59 | 0.38 | 0.23 | 0.01 |
参考公式:回归方程



参考数据:表中






