- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某研究机构对某校高二文科学生的记忆力x和判断力y进行统计分析,得下表数据.
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)试根据(2)中求出的线性回归方程,预测记忆力为14的学生的判断力.
某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前,被点击的次数也可能会提高,已知某关键词被甲、乙等多个公司竞争,其中甲、乙付费情况与每小时点击量结果绘制成如下的折线图.

(1)试根据所给数据计算每小时点击次数的均值方差并分析两组数据的特征;
(2)若把乙公司设置的每次点击价格为x,每小时点击次数为y,则点(x,y)近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y关于x的回归直线
.(附:回归方程系数公式:
)

(1)试根据所给数据计算每小时点击次数的均值方差并分析两组数据的特征;
(2)若把乙公司设置的每次点击价格为x,每小时点击次数为y,则点(x,y)近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y关于x的回归直线


已知x与y之间的几组数据如下表:
则y与x的线性回归直线
必过点( )
x | 0 | 1 | 3 | 4 |
y | 1 | 4 | 6 | 9 |
则y与x的线性回归直线

A.(0,1) | B.(1,4) | C.(2,5) | D.(5,9) |
某产品的广告费用x与销售额y的统计数据如下表:
(1) 如果x与y具有线性相关关系,求出回归直线方程;
(2) 预报广告费用为9万元时销售额约为多少万元?
(注:
)
广告费用x(万元) | 2 | 3 | 4 | 5 |
销售额y(万元) | 24 | 37 | 49 | 58 |
(1) 如果x与y具有线性相关关系,求出回归直线方程;
(2) 预报广告费用为9万元时销售额约为多少万元?
(注:

某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
由表中数据得线性回归方程
中,
≈-2,预测当气温为-4℃时,用电量为多少.
气温/℃ | 18 | 13 | 10 | -1 |
用电量/度 | 24 | 34 | 38 | 64 |
由表中数据得线性回归方程


相关变量x,y的样本数据如下:
经回归分析可得y与x线性相关,并由最小二乘法求得回归直线方程
=1.1x+a,则a=( )
x | 1 | 2 | 3 | 4 | 5 |
y | 2 | 2 | 3 | 5 | 6 |
经回归分析可得y与x线性相关,并由最小二乘法求得回归直线方程

A.0.1 | B.0.2 |
C.0.3 | D.0.4 |
某个制作和外卖意大利比萨的餐饮连锁店,其主要客户群是在校大学生,为研究各店铺某季度的销售额与店铺附近地区大学生人数的关系,随机抽取10个分店的样本,得到数据如下:
(1)画出散点图,并判断各店铺该季度的销售额y与店铺附近地区大学生人数x是否具有线性相关关系.
(2)若具有线性相关关系,求回归方程,若某店铺所在地区内有大学生1万人,预测该店铺的季度销售额.
店铺编号 | 地区内大学生数x(万人) | 某季度销售额y(万元) |
1 | 0.2 | 5.8 |
2 | 0.6 | 10.5 |
3 | 0.8 | 8.8 |
4 | 0.8 | 11.8 |
5 | 1.2 | 11.7 |
6 | 1.6 | 13.7 |
7 | 2 | 15.7 |
8 | 2 | 16.9 |
9 | 2.2 | 14.9 |
10 | 2.6 | 20.2 |
(1)画出散点图,并判断各店铺该季度的销售额y与店铺附近地区大学生人数x是否具有线性相关关系.
(2)若具有线性相关关系,求回归方程,若某店铺所在地区内有大学生1万人,预测该店铺的季度销售额.