- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某地区某农产品近几年的产量统计如表:

(1)根据表中数据,建立
关于
的线性回归方程
;
(2)根据线性回归方程预测2019年该地区该农产品的年产量.
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.(参考数据:
,计算结果保留小数点后两位)

(1)根据表中数据,建立



(2)根据线性回归方程预测2019年该地区该农产品的年产量.
附:对于一组数据





为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每100颗种子浸泡后的发芽数,得到如下表格:
(1)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另3天的数据,求出
关于
的线性回归方程
(2)若由线性回归方程得到的估计数据与所选出的两组检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠.
(参考公式,
)
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差x/oC | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
(1)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另3天的数据,求出



(2)若由线性回归方程得到的估计数据与所选出的两组检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠.
(参考公式,


菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的数据作了初步处理,得到下面的散点图及一些统计量的值.
y(微克)
x(千克)
其中
(I)根据散点图判断,
与
,哪一个适宜作为蔬菜农药残量
与用水量
的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)若用解析式
作为蔬菜农药残量
与用水量
的回归方程,求出
与
的回归方程.(c,d精确到0.1)
(Ⅲ)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据
)
附:参考公式:回归方程
中斜率和截距的最小二乘估计公式分别为:
y(微克)

![]() ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
3 | 38 | 11 | 10 | 374 | -121 | -751 |
其中

(I)根据散点图判断,




(Ⅱ)若用解析式





(Ⅲ)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据

附:参考公式:回归方程


某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:

(1) 算出线性回归方程
; (
精确到十分位)
(2)气象部门预测下个月的平均气温约为6℃,据此估计,求该商场下个月毛衣的销售量.
参考公式:
,

(1) 算出线性回归方程


(2)气象部门预测下个月的平均气温约为6℃,据此估计,求该商场下个月毛衣的销售量.
参考公式:


某企业生产某种产品,为了提高生产效益,通过引进先进的生产技术和管理方式进行改革,并对改革后该产品的产量x(万件)与原材料消耗量y(吨)及100件产品中合格品与不合格品数量作了记录,以便和改革前作对照分析,以下是记录的数据:
表一:改革后产品的产量和相应的原材料消耗量
表二:改革前后定期抽查产品的合格数与不合格数
(1)请根据表一提供数据,用最小二乘法求出y关于x的线性回归方程
.
(2)已知改革前生产7万件产品需要6.5吨原材料,根据回归方程预测生产7万件产品能够节省多少原材料?
(3)请根据表二提供的数据,判断是否有90%的把握认为“改革前后生产的产品的合格率有差异”?
表一:改革后产品的产量和相应的原材料消耗量
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
表二:改革前后定期抽查产品的合格数与不合格数
| 合格品的数量 | 不合格品的数量 | 合计 |
改革前 | 90 | 10 | 100 |
改革后 | 85 | 15 | 100 |
合计 | 175 | 25 | 200 |
(1)请根据表一提供数据,用最小二乘法求出y关于x的线性回归方程

(2)已知改革前生产7万件产品需要6.5吨原材料,根据回归方程预测生产7万件产品能够节省多少原材料?
(3)请根据表二提供的数据,判断是否有90%的把握认为“改革前后生产的产品的合格率有差异”?
某高级中学在今年“五一”期间给校内所有教室安装了同一型号的空调,关于这批空调的使用年限
单位:年
和所支出的维护费用
单位:千元
厂家提供的统计资料如表:
若x与y之间是线性相关关系,请求出维护费用y关于x的线性回归直线方程
;
若规定当维护费用y超过
千元时,该批空调必须报度,试根据
的结论求该批空调使用年限的最大值
结果取整数
参考公式:
,
.




x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |









某地区2007年至2013年农村居民家庭纯收入
(单位:千元)的数据如下表:
(1)求y关于
的线性回归方程;
(2)判断y与
之间是正相关还是负相关?
(3)预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,

年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入![]() | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于

(2)判断y与

(3)预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:


某车间为了给贫困山区的孩子们赶制一批爱心电子产品,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下表所示:
经统计发现零件个数
与加工时间
具有线性相关关系.
(1)求出
关于
的线性回归方程
;
(2)试预测加工10个零件需要多少时间.
利用公式:
,
零件的个数![]() | 2 | 3 | 4 | 5 |
加工的时间![]() | ![]() | 3 | 4 | ![]() |
经统计发现零件个数


(1)求出



(2)试预测加工10个零件需要多少时间.
利用公式:

