- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着网络时代的进步,流量成为手机的附带品,人们可以利用手机随时随地的浏览网页,聊天,看视频,因此,社会上产生了很多低头族.某研究人员对该地区18∽50岁的5000名居民在月流量的使用情况上做出调查,所得结果统计如下图所示:

(Ⅰ)以频率估计概率,若在该地区任取3位居民,其中恰有
位居民的月流量的使用情况
在300M∽400M之间,求
的期望
;
(Ⅱ)求被抽查的居民使用流量的平均值;
(Ⅲ)经过数据分析,在一定的范围内,流量套餐的打折情况
与其日销售份数
成线性相关
关系,该研究人员将流量套餐的打折情况
与其日销售份数
的结果统计如下表所示:
试建立
关于
的的回归方程.
附注:回归方程
中斜率和截距的最小二乘估计公式分别为:
,

(Ⅰ)以频率估计概率,若在该地区任取3位居民,其中恰有

在300M∽400M之间,求


(Ⅱ)求被抽查的居民使用流量的平均值;
(Ⅲ)经过数据分析,在一定的范围内,流量套餐的打折情况


关系,该研究人员将流量套餐的打折情况


折扣![]() | 1折 | 2折 | 3折 | 4折 | 5折 |
销售份数![]() | 50 | 85 | 115 | 140 | 160 |
试建立


附注:回归方程



某产品的广告费用x与销售额y的统计数据如下表:
(1)求根据上表可得线性回归方程
=
x+
;
(2) 模型预报广告费用为6万元时销售额为多少
广告费用x(万元) | 4 | 2 | 3 | 5 |
销售额y(万元) | 49 | 26 | 39 | 54 |
(1)求根据上表可得线性回归方程



(2) 模型预报广告费用为6万元时销售额为多少
假设关于某种设备的使用年限
(年)与所支出的维修费用
(万元)有如下统计资料:
已知
,
.
, 
(1)求
,
;
(2)若
与
具有线性相关关系,求出线性回归方程;
(3)估计使用年限为10年时,维修费用约是多少?


x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
已知




(1)求


(2)若


(3)估计使用年限为10年时,维修费用约是多少?
某地级市共有200000中小学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000元、1500元、2000元。经济学家调查发现,当地人均可支配年收入较上一年每增加
,一般困难的学生中有
会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生中有
转为一般困难,特别困难的学生中有
转为很困难。现统计了该地级市2013年到2017年共5年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份
取13时代表2013年,
与
(万元)近似满足关系式
,其中
为常数。(2013年至2019年该市中学生人数大致保持不变)

其中
, 
(Ⅰ)估计该市2018年人均可支配年收入;
(Ⅱ)求该市2018年的“专项教育基金”的财政预算大约为多少?
附:对于一组具有线性相关关系的数据
,其回归直线方程
的斜率和截距的最小二乘估计分别为












其中


(Ⅰ)估计该市2018年人均可支配年收入;
(Ⅱ)求该市2018年的“专项教育基金”的财政预算大约为多少?
附:对于一组具有线性相关关系的数据




假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:
i | 1 | 2 | 3 | 4 | 5 | ![]() ![]() ![]() |
xi | 2 | 3 | 4 | 5 | 6 | |
yi | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 | |
xi yi | 4.4 | 11.4 | 22.0 | 32.5 | 42.0 |
若由资料知,y对x呈线性相关关系,试求:
(1)回归直线方程;
(2)估计使用年限为10年时,维修费用约是多少
柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y进行统计分析,得出下表数据.
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
;
(2)试根据(1)求出的线性回归方程,预测燃放烟花爆竹的天数为9的雾霾天数.
(相关公式:
)
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

(2)试根据(1)求出的线性回归方程,预测燃放烟花爆竹的天数为9的雾霾天数.
(相关公式:
