已知具有相关关系的两个变量之间的几组数据如下表所示:

(1)请根据上表数据在网格纸中绘制散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计当时,的值;
(3)将表格中的数据看作五个点的坐标,则从这五个点中随机抽取3个点,记落在直线右下方的点的个数为,求的分布列以及期望.
参考公式:.
当前题号:1 | 题型:解答题 | 难度:0.99
以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:
房屋面积(
115
110
80
135
105
销售价格(万元)
24.8
21.6
18.4
29.2
22
 
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为150时的销售价格.附:回归直线的斜率和截距的最小二乘法估计公式分别为:
当前题号:2 | 题型:解答题 | 难度:0.99
根据“2015年国民经济和社会发展统计公报” 中公布的数据,从2011 年到2015 年,我国的
第三产业在中的比重如下:
年份





年份代码





第三产业比重





 
(1)在所给坐标系中作出数据对应的散点图;
(2)建立第三产业在中的比重关于年份代码的回归方程;
(3)按照当前的变化趋势,预测2017 年我国第三产业在中的比重.
附注: 回归直线方程中的斜率和截距的最小二乘估计公式分别为:
,  .
当前题号:3 | 题型:解答题 | 难度:0.99
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日期
12月1日
12月2日
12月3日
12月4日
12月5日
温差x/摄氏度
10
11
13
12
8
发芽数y/颗
23
25
30
26
16
 
该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再用被选取的2组数据进行检验。
(Ⅰ)求选取的2组数据恰好是不相邻2天的数据的概率;
(Ⅱ)若选取的是12月1日与12月5日的2组数据,请根据12月2日至4日的数据,求出y关于x的线性回归方程,并判断该线性回归方程是否可靠(若由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的
附:回归方程 中斜率和截距的最小二乘估计公式分别为:
当前题号:4 | 题型:解答题 | 难度:0.99
已知下列表格所示的数据的回归直线方程为,则的值为__________.

2
3
4
5
6

251
254
257
262
266
 
当前题号:5 | 题型:填空题 | 难度:0.99
某工厂对新研发的一种产品进行试销,得到如下数据表:

(1)根据上表求出回归直线方程,并预测当单价定为8.3元时的销量;
(2)如果该工厂每件产品的成本为5.5元,利用所求的回归方程,要使得利润最大,单价应该定为多少?
附:线性回归方程中斜率和截距最小二乘估计计算公式:
当前题号:6 | 题型:解答题 | 难度:0.99
变量之间的四组相关数据如表所示:

之间的回归方程为,则的值为__________.
当前题号:7 | 题型:填空题 | 难度:0.99
东莞市某高级中学在今年4月份安装了一批空调,关于这批空调的使用年限(单位:年,)和所支出的维护费用(单位:万元)厂家提供的统计资料如下:

(1)请根据以上数据,用最小二乘法原理求出维护费用关于的线性回归方程
(2)若规定当维护费用超过13.1万元时,该批空调必须报废,试根据(1)的结论预测该批空调使用年限的最大值.
参考公式:最小二乘估计线性回归方程中系数计算公式:
,其中表示样本均值.
当前题号:8 | 题型:解答题 | 难度:0.99
   某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间近似满足关系式为大于的常数),现随机抽取件合格产品,测得数据如下:
尺寸






质量






 
对数据作了初步处理,相关统计量的值如下表:








 
(1)根据所给数据,求关于的回归方程;
(2)按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品,现从抽取的件合格产品中再任选件,记为取到优等品的件数,试求随机变量的分布列和期望.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.
当前题号:9 | 题型:解答题 | 难度:0.99
已知呈线性相关关系的变量之间的关系如下表所示,则回归直线一定过点(   )










 
A.B.
C.D.
当前题号:10 | 题型:单选题 | 难度:0.99