- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某品牌新款夏装即将上市,为了对夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:
连锁店 | A店 | B店 | C店 | |||
售价![]() | 80 | 86 | 82 | 88 | 84 | 90 |
销售量![]() | 88 | 78 | 85 | 75 | 82 | 66 |
(1)以三家连锁店分别的平均售价和平均销量为散点,求出售价与销量的回归直线方程

(2)在大量投入市场后,销售量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该款夏装在销售上获得最大利润,该款夏装的单价应定为多少元(保留整数)?

在彩色显影中,由经验可知:形成染料光学密度
与析出银的光学密度
由公式
表示,现测得试验数据如下:
(1)写出变换过程,并列出新变量的数据表;
(2)求出b与a ,并写出
对
的回归方程.(精确到0.01)(参考数据;Ln0.1
-2.30,Ln0.37
-0.10, Ln0.79
-0.24, Ln1.30
0.26,
,
)



![]() | 0.05 | 0.25 | 0.10 | 0.20 | 0.50 |
![]() | 0.10 | 1.00 | 0.37 | 0.79 | 1.30 |
(1)写出变换过程,并列出新变量的数据表;
(2)求出b与a ,并写出








下表是某厂1~4月份用水量(单位:百吨)的一组数据,
由其散点图知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是=-0.7x+a,则a=________.
月份x | 1 | 2 | 3 | 4 |
用水量y | 4.5 | 4 | 3 | 2.5 |
由其散点图知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是=-0.7x+a,则a=________.
某种产品的广告费用支出
(千元)与销售额
(10万元)之间有如下的对应数据:
(Ⅰ)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出销售额
关于费用支出
的线性回归方程
.
(参考值:
)参考公式:用最小二乘法求线性回归方程系数公式
,


(Ⅰ)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出销售额



(参考值:



班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本(只要求写出算式即可,不必计算出结果);
(2)随机抽取8位同学,数学分数依次为:60,65,70,75,80,85,90,95;
物理成绩依次为:72,77,80,84,88,90,93,95,
①若规定90分(含90分)以上为优秀,记


②若这8位同学的数学、物理分数事实上对应下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学分数![]() | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分数![]() | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
根据上表数据可知,变量














已知两个变量x,y之间具有线性相关关系,试验测得(x,y)的四组值分别为(1,2),(2,4),(3,5),(4,7),则y与x之间的回归直线方程为( )
A.y=0.8x+3 | B.y=-1.2x+7.5 |
C.y=1.6x+0.5 | D.y=1.3x+1.2 |
从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得
,
,
,
.
(1)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程y=bx+a中,
,
,其中
,
为样本平均值,线性回归方程也可写为
.




(1)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程y=bx+a中,





由某种设备的使用年限
(年)与所支出的维修费
(万元)的数据资料,算得
,
,
,
.
(Ⅰ)求所支出的维修费
对使用年限
的线性回归方程
;
(Ⅱ)判断变量
与
之间是正相关还是负相关;
(Ⅲ)估计使用年限为8年时,支出的维修费约是多少.
附:在线性回归方程
中,
,
,其中
,
为
样本平均值,线性回归方程也可写为
.






(Ⅰ)求所支出的维修费



(Ⅱ)判断变量


(Ⅲ)估计使用年限为8年时,支出的维修费约是多少.
附:在线性回归方程





样本平均值,线性回归方程也可写为

在测量一根新弹簧的劲度系数时,测得了如表的结果:

(1)请画出上表所给数据的散点图;
(2)弹簧长度与所挂重量之间的关系是否具有线性相关性,若具有请根据上表提供的数据,求出
关于
的线性回归方程
;
(3)根据回归方程,求挂重量为
的物体时弹簧的长度.所求的长度是弹簧的实际长度吗?为什么?
所挂重量![]() | 1 | 2 | 3 | 5 | 7 | 9 |
弹簧长度![]() | 11 | 12 | 12 | 13 | 14 | 16 |

(1)请画出上表所给数据的散点图;
(2)弹簧长度与所挂重量之间的关系是否具有线性相关性,若具有请根据上表提供的数据,求出



(3)根据回归方程,求挂重量为
