某市为了对学生的数理(数学与物理)学习能力进行分析,从10000名学生中随机抽出100位学生的数理综合学习能力等级分数(6分制)作为样本,分数频数分布如下表:
等级得分






人数
3
17
30
30
17
3
 
(Ⅰ)如果以能力等级分数大于4分作为良好的标准,从样本中任意抽取2名学生,求恰有1名学生为良好的概率;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值为1.5)作为代表:
(ⅰ)据此,计算这100名学生数理学习能力等级分数的期望及标准差(精确到0.1);
(ⅱ) 若总体服从正态分布,以样本估计总体,估计该市这10000名学生中数理学习能力等级在范围内的人数 .
(Ⅲ)从这10000名学生中任意抽取5名同学,他们数学与物理单科学习能力等级分数如下表:
 
(ⅰ)请画出上表数据的散点图;
(ⅱ)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程.(附参考数据:
当前题号:1 | 题型:解答题 | 难度:0.99
某商场营销人员进行某商品的市场营销调查时发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:
反馈点数t
1
2
3
4
5
销量(百件)/天
0.5
0.6
1
1.4
1.7
 
(Ⅰ)经分析发现,可用线性回归模型拟合当地该商品销量(千件)与返还点数之间的相关关系.试预测若返回6个点时该商品每天的销量;
(Ⅱ)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
返还点数预期值区间

(百分比)

[1,3)
[3,5)
[5,7)
[7,9)
[9,11)
[11,13)
频数
20
60
60
30
20
10
 
(1)求这200位拟购买该商品的消费者对返点点数的心理预期值的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0.1);
(2)将对返点点数的心理预期值在的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,设抽出的3人中 “欲望紧缩型”消费者的人数为随机变量,求的分布列及数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
.假设关于某设备的使用年限x和所支出的维修费用 y(万元),有如下的统计资料: 
x
2
3
4
5
6
y
2.2
3.8
5.5
6.5
7. 0
 
若由资料可知y对x呈线性相关关系,且线性回归方程为,其中已知,请估计使用年限为20年时,维修费用约为_________.
当前题号:3 | 题型:填空题 | 难度:0.99
某公司对2000年月份的获利情况进行了数据统计,如下表所示:
月份 
1
2
3
4
利润万元
5
6
6.5
8
 
利用线性回归分析思想,预测出2000年8月份的利润为11.6万元,则关于的线性回归方程为__________.
当前题号:4 | 题型:填空题 | 难度:0.99
某种产品的广告支出x与销售额y(单位:万元)之间有如下对应关系:

(Ⅰ)假设y与x之间具有线性相关关系,求线性回归方程;
(Ⅱ)求相关指数,并证明残差变量对销售额的影响占百分之几?
当前题号:5 | 题型:解答题 | 难度:0.99
.以下是粤西地区某县搜集到的新房屋的销售价格和房屋的面积的数据:

(1)画出数据散点图;
(2)由散点图判断新房屋销售价格y和房屋面积x是否具有线性相关关系?若有,求线性回归方程.(保留四位小数)
(3)根据房屋面积预报销售价格的回归方程,预报房屋面积为时的销售价格.
参考公式:
参考数据:

当前题号:6 | 题型:解答题 | 难度:0.99
一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
人数
10
15
20
25
30
35
40
件数
4
7
12
15
20
23
27
 
其中
(Ⅰ)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图;
(Ⅱ)求回归直线方程;(结果保留到小数点后两位)
(参考数据:

(Ⅲ)预测进店人数为80人时,商品销售的件数.(结果保留整数)
当前题号:7 | 题型:解答题 | 难度:0.99
一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
人数
10
15
20
25
30
35
40
件数
4
7
12
15
20
23
27
 
其中

(Ⅰ)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图.
(Ⅱ)求回归直线方程.(结果保留到小数点后两位)
(参考数据:

(Ⅲ)预测进店人数为80人时,商品销售的件数.(结果保留整数)
当前题号:8 | 题型:解答题 | 难度:0.99
已知之间的一组数据:
















 
关于的线性回归方程为___________.(
当前题号:9 | 题型:填空题 | 难度:0.99
给出下列四个结论:
(1)如图中,D是斜边AC上的点,|CD|=|CB|.以B为起点任作一条射线BE交AC于E点,则E点落在线段CD上的概率是

(2)设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,,n),用最小二乘法建立的线性回归方程为,则若该大学某女生身高增加1 cm,则其体重约增加0.85 kg;
(3)为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,应该用独立性检验最有说服力;
(4)已知随机变量服从正态分布
其中正确结论的个数为()
A.1
B.2
C.3
D.4
 
当前题号:10 | 题型:解答题 | 难度:0.99