某产品的广告费用x与销售额y的统计数据如上表根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为().
A.63.6万元B.65.5万元C.67.7万元D.72.0万元
当前题号:1 | 题型:单选题 | 难度:0.99
某商场近 5 个月的销售额和利润额如表所示:

(1)画出散点图,观察散点图,说明两个变量有怎样的相关关系;
(2) 求出利润额关于销售额的回归直线方程;
(3) 当销售额为4千万元时,利用(2)的结论估计该商场的利润额(百万元).
,,
当前题号:2 | 题型:解答题 | 难度:0.99
某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:
单价(元)
18
19
20
21
22
销量(册)
61
56
50
48
45
 
(l)根据表中数据,请建立关于的回归直线方程:
(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?
附:.
当前题号:3 | 题型:解答题 | 难度:0.99
一个调查学生记忆力的研究团队从某中学随机挑选100名学生进行记忆测试,通过讲解100个陌生单词后,相隔十分钟进行听写测试,间隔时间(分钟)和答对人数的统计表格如下:
时间(分钟)
10
20
30
40
50
60
70
80
90
100
答对人数
98
70
52
36
30
20
15
11
5
5

1.99
1.85
1.72
1.56
1.48
1.30
1.18
1.04
0.7
0.7
 
时间与答对人数的散点图如图:

附:,对于一组数据,……,,其回归直线的斜率和截距的最小二乘估计分别为:.请根据表格数据回答下列问题:
(1)根据散点图判断,,哪个更适宣作为线性回归类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果,建立的回归方程;(数据保留3位有效数字)
(3)根据(2)请估算要想记住的内容,至多间隔多少分钟重新记忆一遍.(参考数据:
当前题号:4 | 题型:解答题 | 难度:0.99
一研学实践活动小组利用课余时间,对某公司1月份至5月份销售某种产品的销售量及销售单价进行了调查,月销售单价(单位:元)和月销售量(单位:百件)之间的一组数据如下表所示:
月份
1
2
3
4
5
月销售单价(元)
1.6
1.8
2
2.2
2.4
月销售量(百件)
10
8
7
6
4
 
(1)根据1至5月份的数据,求出关于的回归直线方程;
(2)预计在今后的销售中,月销售量与月销售单价仍然服从(1)中的关系,若该种产品的成本是1元/件,那么该产品的月销售单价应定为多少元才能获得最大月利润?(注:利润=销售收入-成本)
(回归直线方程,其中.参考数据:
当前题号:5 | 题型:解答题 | 难度:0.99
某大学生参加社会实践活动,对某公司1月份至6月份销售某种配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如下表所示:
月份
1
2
3
4
5
6
销售单价(元)
9
9.5
10
10.5
11
8
销售量(件)
11
10
8
6
5
14.2
 
(1)根据1至5月份的数据,先求出关于的回归直线方程;6月份的数据作为检验数据.若由回归直线方程得到的预测数据与检验数据的误差不超过,则认为所得到的回归直线方程是理想的.试问所求得的回归直线方程是否理想?
(2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的回归关系,如果该种机器配件的成本是元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考数据:
参考公式:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:
当前题号:6 | 题型:解答题 | 难度:0.99
2019年9月24日国家统计局在庆祝中华人民共和国成立70周年活动新闻中心举办新闻发布会指出,1952年~2018年,我国GDP查679.1亿元跃升至90.03万亿元,实际增长174倍;人均GDP从119元提高到6.46万元,实际增长70倍.全国各族人民,砥砺奋进,顽强拼搏,实现了经济社会的跨越式发展.如图是全国2010年至2018年GDP总量(万亿元)的折线图.

注:年份代码1~9分别对应年份2010~2018.
(1)由折线图看出,可用线性回归模型拟合与年份代码的关系,请用相关系数加以说明;
(2)建立关于的回归方程(系数精确到0.01),预测2019年全国GDP的总量.
附注:参考数据:.
参考公式:相关系数
回归方程中斜率和截距的最小二乘法估计公式分别为
当前题号:7 | 题型:解答题 | 难度:0.99
2017年4月1日,新华通讯社发布:国务院决定设立河北雄安新区,消息一出,河北省雄县、容城、安新3县及周边部分区域迅速成为海内外高度关注的焦点.
(1)为了响应国家号召,北京市某高校立即在所属的8个学院的教职员工中作了“是否愿意将学校整体搬迁至雄安新区”的问卷调查,8个学院的调查人数及统计数据如下:

请根据上表提供的数据,用最小二乘法求出变量关于变量的线性回归方程(保留小数点后两位有效数字);若该校共有教职员工2500人,请预测该校愿意将学校整体搬迁至雄安新区的人数;
(2)若该校的8位院长中有5位院长愿意将学校整体搬迁至雄安新区,现该校拟在这8位院长中随机选取4位院长组成考察团赴雄安新区进行实地考察,记为考察团中愿意将学校整体搬迁至雄安新区的院长人数,求的分布列及数学期望.
参考公式及数据:.
当前题号:8 | 题型:解答题 | 难度:0.99
某工厂提供了节能降耗技术改造后生产产品过程中的产量(吨)与相应的生产能耗(吨)的几组对照数据.










 
(1)请根据表中提供的数据,用最小二乘法求出关于的线性回归方程
(2)试根据(1)求出的线性回归方程,预测产量为(吨)的生产能耗.相关公式:
当前题号:9 | 题型:解答题 | 难度:0.99
某同学在只听课不做作业的情况下,数学总不及格后来他终于下定决心要改变这一切,他以一个月为周期,每天都作一定量的题,看每次月考的数学成绩,得到5个月的数据如下表:
一个月内每天做题数x
5
8
6
4
7
数学月考成绩y
82
87
84
81
86
 
根据上表得到回归直线方程,若该同学数学想达到90分,则估计他每天至少要做的数学题数为  
A.8B.9C.10D.11
当前题号:10 | 题型:单选题 | 难度:0.99