- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- 用样本估计总体
- + 变量间的相关关系
- 相关关系
- 散点图
- 回归直线方程
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知x与y之间的一组数据:
则y与x的线性回归方程
必过点( )
x | 0 | 1 | 2 | 3 |
y | 1 | 3 | 5 | 7 |
则y与x的线性回归方程

A.(1.5 ,4) | B.(2,2) | C.(1.5 ,0) | D.(1,2) |
下列说法中正确的个数是()
⑴ 回归方程只适合用我们所研究的样本的总体;
⑵线性回归模型y=bx+a+e中,因变量y除了受自变量x的影响外,可能还受到其它因素的影响,这些因素会导致随机误差e的产生;
⑶设有一个回归方程
,变量x增加一个单位时,y平均增加5个单位;
⑷用相关指数R2来刻画回归的效果时,R2取值越大,则残差平方和越小,模型拟合的效果就越好.
⑴ 回归方程只适合用我们所研究的样本的总体;
⑵线性回归模型y=bx+a+e中,因变量y除了受自变量x的影响外,可能还受到其它因素的影响,这些因素会导致随机误差e的产生;
⑶设有一个回归方程

⑷用相关指数R2来刻画回归的效果时,R2取值越大,则残差平方和越小,模型拟合的效果就越好.
A.1 | B.2 | C.3 | D.4 |
某人对一个地区人均工资x与该地区人均消费y进行统计调查得y与x具有相关关系,且回归直线方程为
(单位:千元),若该地区人均消费水平为7.675,估计该地区人均消费额占人均工资收入的百分比约为____________.

给出以下命题:
①双曲线
的渐近线方程为
;
②命题
”是真命题;
③已知线性回归方程为
,当变量
增加2个单位,其预报值平均增加4个单位;
④设随机变量ξ服从正态分布N(0,1),若
,则
;
⑤设
,则
则正确命题的序号为________(写出所有正确命题的序号).
①双曲线


②命题

③已知线性回归方程为


④设随机变量ξ服从正态分布N(0,1),若


⑤设


则正确命题的序号为________(写出所有正确命题的序号).
某商场营销人员进行某商品的市场营销调查时发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:
(Ⅰ)经分析发现,可用线性回归模型
拟合当地该商品销量
(千件)与返还点数
之间的相关关系.试预测若返回6个点时该商品每天的销量;
(Ⅱ)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
(1)求这200位拟购买该商品的消费者对返点点数的心理预期值
的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0.1);
(2)将对返点点数的心理预期值在
和
的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,设抽出的3人中 “欲望紧缩型”消费者的人数为随机变量
,求
的分布列及数学期望.
反馈点数t | 1 | 2 | 3 | 4 | 5 |
销量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(Ⅰ)经分析发现,可用线性回归模型



(Ⅱ)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
返还点数预期值区间 (百分比) | [1,3) | [3,5) | [5,7) | [7,9) | [9,11) | [11,13) |
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
(1)求这200位拟购买该商品的消费者对返点点数的心理预期值

(2)将对返点点数的心理预期值在




.假设关于某设备的使用年限x和所支出的维修费用 y(万元),有如下的统计资料:
若由资料可知y对x呈线性相关关系,且线性回归方程为
,其中已知
,请估计使用年限为20年时,维修费用约为_________.
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7. 0 |
若由资料可知y对x呈线性相关关系,且线性回归方程为


为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了下表:
则根据表中的数据,计算随机变量
的值,并参考有关公式,你认为性别与是否喜爱打篮球之间有关系的把握有( )
| 喜爱打篮球 | 不喜爱打篮球 | 合计 |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
则根据表中的数据,计算随机变量

A.0 | B.![]() | C.99.5% | D.![]() |
已知某企业上半年前5个月产品广告投入与利润额统计如下:
由此所得回归方程为
,若6月份广告投入10万元,估计所获得利润为( )
月份 | 1 | 2 | 3 | 4 | 5 |
广告投入(x万元) | 9.5 | 9.3 | 9.1 | 8.9 | 9.7 |
利润(y万元) | 92 | 89 | 89 | 87 | 93 |
由此所得回归方程为

A.95.25万元 | B.96.5万元 | C.97万元 | D.97.25万元 |
某小卖部销售一品牌饮料的零售价x(元/评)与销售量y(瓶)的关系统计如下:
已知的关系符合线性回归方程,其中.当单价为4.2元时,估计该小卖部销售这种品牌饮料的销量为( )
零售价x(元/瓶) | 3.0 | 3.2 | 3.4 | 3.6 | 3.8 | 4.0 |
销量y(瓶) | 50 | 44 | 43 | 40 | 35 | 28 |
已知的关系符合线性回归方程,其中.当单价为4.2元时,估计该小卖部销售这种品牌饮料的销量为( )
A.20 | B.22 | C.24 | D.26 |