- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- + 极差、方差、标准差
- 计算几个数据的极差、方差、标准差
- 根据方差、标准差求参数
- 各数据同时加减同一数对方差的影响
- 各数据同时乘除同一数对方差的影响
- 用方差、标准差说明数据的波动程度
- 估计总体的方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某工厂
,
两条生产线生产同款产品,若产品按照一、二、三等级分类,则每件可分别获利10元、8元、6元,现从
,
生产线的产品中各随机抽取100件进行检测,结果统计如下图:

(1)根据已知数据,判断是否有99%的把握认为一等级产品与生产线有关?
(2)分别计算两条生产线抽样产品获利的方差,以此作为判断依据,说明哪条生产线的获利更稳定?
(3)估计该厂产量为2000件产品时的利润以及一等级产品的利润.
附:






(1)根据已知数据,判断是否有99%的把握认为一等级产品与生产线有关?
(2)分别计算两条生产线抽样产品获利的方差,以此作为判断依据,说明哪条生产线的获利更稳定?
(3)估计该厂产量为2000件产品时的利润以及一等级产品的利润.
附:


某市电视台对本市2019年春晚的节目进行评分,分数设置为
分,
分,
分,
分,
分五个等级.已知
名大众评委对其中一个舞蹈节目评分的结果如图,则这
名大众评委的分数的方差为_________.








某校高一年级开设了丰富多彩的校本课程,现从甲、乙两个班随机抽取了5名学生校本课程的学分,统计如下表.
用
分别表示甲、乙两班抽取的5名学生学分的方差,计算两个班学分的方差.得
______,并由此可判断成绩更稳定的班级是______班.
甲 | 8 | 11 | 14 | 15 | 22 |
乙 | 6 | 7 | 10 | 23 | 24 |
用


如果数据x1,x2,…,xn的平均数是
,方差是s2,则3x1+2,3x2+2,…,3xn+2的平均数和方差分别是 ( )

A.![]() | B.3![]() |
C.3![]() | D.3![]() |