- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- + 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
将甲、乙两名篮球运动员在五场比赛中所得的分数的数据绘制成茎叶图,如图所示,分别计算在这五场比赛中甲、乙得分的平均数与方差,并据此判断谁的平均水平更好,谁的稳定性更好? 

为了响应厦门市政府“低碳生活,绿色出行”的号召,思明区委文明办率先全市发起“少开一天车,呵护厦门蓝”绿色出行活动.“从今天开始,从我做起,力争每周至少一天不开车,上下班或公务活动带头选择步行、骑车或乘坐公交车,鼓励拼车……”铿锵有力的话语,传递了绿色出行、低碳生活的理念.
某机构随机调查了本市部分成年市民某月骑车次数,统计如下:
联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.用样本估计总体的思想,解决如下问题:
(1)估计本市一个18岁以上青年人每月骑车的平均次数;
(2)若月骑车次数不少于30次者称为“骑行爱好者”,根据这些数据,能否在犯错误的概率不超过0.001的前提下认为“骑行爱好者”与“青年人”有关?

某机构随机调查了本市部分成年市民某月骑车次数,统计如下:
![]() ![]() 年龄 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60] |
18岁至31岁 | 8 | 12 | 20 | 60 | 140 | 150 |
32岁至44岁 | 12 | 28 | 20 | 140 | 60 | 150 |
45岁至59岁 | 25 | 50 | 80 | 100 | 225 | 450 |
60岁及以上 | 25 | 10 | 10 | 18 | 5 | 2 |
联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.用样本估计总体的思想,解决如下问题:
(1)估计本市一个18岁以上青年人每月骑车的平均次数;
(2)若月骑车次数不少于30次者称为“骑行爱好者”,根据这些数据,能否在犯错误的概率不超过0.001的前提下认为“骑行爱好者”与“青年人”有关?
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

据报道,某公司的32名职工的月工资(单位:元)如下:
(1)求该公司职工工资的平均数、中位数、众数.(精确到1元)
(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数分别是多少?(精确到1元)
(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.
职务 | 董事长 | 副董事长 | 董事 | 总经理 | 经理 | 管理 | 职员 |
人数 | 1 | 1 | 2 | 1 | 5 | 3 | 20 |
工资 | 5 500 | 5 000 | 3 500 | 3 000 | 2 500 | 2 000 | 1 500 |
(1)求该公司职工工资的平均数、中位数、众数.(精确到1元)
(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数分别是多少?(精确到1元)
(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.
某快递公司收取快递费用的标准是:重量不超过
的包裹收费10元;重量超过
的包裹,除
收费10元之外,超过
的部分,每超出
(不足
,按
计算)需再收5元.
该公司对近60天,每天揽件数量统计如下表:

(1)某人打算将
三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过30元的概率;
(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过150件,工资100元,目前前台有工作人员3人,那么,公司将前台工作人员裁员1人对提高公司利润是否更有利?







该公司对近60天,每天揽件数量统计如下表:

(1)某人打算将

(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过150件,工资100元,目前前台有工作人员3人,那么,公司将前台工作人员裁员1人对提高公司利润是否更有利?
已知数据x1,x2,x3,…,x50,500(单位:kg),其中x1,x2,x3,…,x50是某班50个学生的体重,设这50个学生体重的平均数为x,中位数为y,则x1,x2,x3,…,x50,500这51个数据的平均数、中位数分别与x、y比较,下列说法正确的是 ( )
A.平均数一定变大,中位数一定变大 |
B.平均数一定变大,中位数可能不变 |
C.平均数可能不变,中位数可能不变 |
D.平均数可能不变,中位数可能变小 |
某研究小组为了研究某品牌智能手机在正常使用情况下的电池供电时间,分别从该品牌手机的甲、乙两种型号中各选取
部进行测试,其结果如下:
(1)求甲、乙两种手机供电时间的平均值与方差,并判断哪种手机电池质量好;
(2)为了进一步研究乙种手机的电池性能,从上述
部乙种手机中随机抽取
部求这两部手机中恰有一部手机的供电时间大于该种手机供电时间平均值的概率.

甲种手机供电时间(小时) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
乙种手机供电时间(小时) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)求甲、乙两种手机供电时间的平均值与方差,并判断哪种手机电池质量好;
(2)为了进一步研究乙种手机的电池性能,从上述


某公司在某条商业街分别开有两家业务上有关联的零售商店,这两家商店的日纯利润变化情况如下表所示:

(1)从这几天的日纯利润来看,哪一家商店的日平均纯利润多些?
(2)由表中数据可以认为这两家商店的日纯利润之间有较强的线性相关关系.
(ⅰ)试求
与
之间的线性回归方程;
(ⅱ)预测当
店日纯利润不低于2万元时,
店日纯利润的大致范围(精确到小数点后两位);
(3)根据上述5日内的日纯利润变化情况来看,哪家商店经营状况更好?
附:线性回归方程
中,
,
.
参考数据:
,
.

(1)从这几天的日纯利润来看,哪一家商店的日平均纯利润多些?
(2)由表中数据可以认为这两家商店的日纯利润之间有较强的线性相关关系.
(ⅰ)试求


(ⅱ)预测当


(3)根据上述5日内的日纯利润变化情况来看,哪家商店经营状况更好?
附:线性回归方程



参考数据:


某企业有甲、乙两条生产线生产同一种产品,为了检测两条生产线产品的质量情况,随机从两条生产线 生产的大量产品中各抽取了 40件产品作为样本,检测某一项质量指标值
,得到如图所示的频率分布直方图,若
,亦则该产品为示合格产品,若
,则该产品为二等品,若
,则该产品为一等品.


(1)用样本估计总体的思想,从甲、乙两条生产线中各随机抽取一件产品,试估计这两件产品中恰好一件为二等品,一件为一等品的概率;
(2)根据图1和图2,对两条生产线从样本的平均值和方差方面进行比较,哪一条生产线更好;
(3)从甲生产线的样本中,满足质量指标值
在
的产品中随机选出3件,记
为指标值
在
中的件数,求
的分布列和数学期望•






(1)用样本估计总体的思想,从甲、乙两条生产线中各随机抽取一件产品,试估计这两件产品中恰好一件为二等品,一件为一等品的概率;
(2)根据图1和图2,对两条生产线从样本的平均值和方差方面进行比较,哪一条生产线更好;
(3)从甲生产线的样本中,满足质量指标值






全国文明城市,简称文明城市,是指在全面建设小康社会中市民整体素质和城市文明程度较高的城市.全国文明城市称号是反映中国大陆城市整体文明水平的最高荣誉称号.为普及相关知识,争创全国文明城市,某市组织了文明城市知识竞赛,现随机抽取了甲、乙两个单位各5名职工的成绩(单位:分)如下表:

(1)根据上表中的数据,分别求出甲、乙两个单位5名职工的成绩的平均数和方差,并比较哪个单位的职工对文明城市知识掌握得更好;
(2)用简单随机抽样法从乙单位5名职工中抽取2人,求抽取的2名职工的成绩差的绝对值不小于4的概率.

(1)根据上表中的数据,分别求出甲、乙两个单位5名职工的成绩的平均数和方差,并比较哪个单位的职工对文明城市知识掌握得更好;
(2)用简单随机抽样法从乙单位5名职工中抽取2人,求抽取的2名职工的成绩差的绝对值不小于4的概率.