- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- + 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图是某工厂对一批新产品长度(单位:
)检测结果的频率分布直方图.估计这批产品的平均数与中位数分别为( )



A.22.5 20 | B.22.5 22.75 | C.22.75 22.5 | D.22.75 25 |
某市对各老旧小区环境整治效果进行满意度测评,共有10000人参加这次测评(满分100分,得分全为整数).为了解本次测评分数情况,从中随机抽取了部分人的测评分数进行统计,整理见下表:
(1)求出表中
,
,
的值;
(2)若分数在80(含80分)以上表示对该项目“非常满意”,其中分数在90(含90分)以上表示“十分满意”,现从被抽取的“非常满意“人群中随机抽取2人,求至少有一人分数是“十分满意”的概率;
(3)请你根据样本数据估计全市的平均测评分数
组别 | 分组 | 频数 | 频率 |
1 | ![]() | 3 | 0.06 |
2 | ![]() | 15 | 0.3 |
3 | ![]() | 21 | ![]() |
4 | ![]() | 3 | 0.12 |
5 | ![]() | ![]() | 0.1 |
合计 | ![]() | 1.00 |
(1)求出表中



(2)若分数在80(含80分)以上表示对该项目“非常满意”,其中分数在90(含90分)以上表示“十分满意”,现从被抽取的“非常满意“人群中随机抽取2人,求至少有一人分数是“十分满意”的概率;
(3)请你根据样本数据估计全市的平均测评分数
为检查某工厂所生产的8万台电风扇的质量,抽查了其中20台的无故障连续使用时限(单位:小时)如下:
248 256 232 243 188 268 278 266 289 312
274 296 288 302 295 228 287 217 329 283

(1)完成频率分布表,并作出频率分布直方图;
(2)估计8万台电风扇中有多少台无故障连续使用时限不低于280小时;
(3)用组中值(同一组中的数据在该组区间的中点值)估计样本的平均无故障连续使用时限.
248 256 232 243 188 268 278 266 289 312
274 296 288 302 295 228 287 217 329 283
分组 | 频数 | 频率 | 频率/组距 |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
总计 | | | 0.05 |

(1)完成频率分布表,并作出频率分布直方图;
(2)估计8万台电风扇中有多少台无故障连续使用时限不低于280小时;
(3)用组中值(同一组中的数据在该组区间的中点值)估计样本的平均无故障连续使用时限.
为庆祝国庆节,某中学团委组织了“歌颂祖国,爱我中华”知识竞赛,从参加考试的学生中抽出60名,将其成绩(成绩均为整数)分成[40,50),[50,60),…,[90,100)六组,并画出如图所示的部分频率分布直方图,观察图形,回答下列问题:

(1)求第四组的频率,并补全这个频率分布直方图;
(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)

(1)求第四组的频率,并补全这个频率分布直方图;
(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)
随着金融市场的发展,越来越多人选择投资“黄金”作为理财的手段,下面将A市把黄金作为理财产品的投资人的年龄情况统计如下图所示.

(1)求图中a的值;
(2)求把黄金作为理财产品的投资者的年龄的中位数以及平均数;(结果用小数表示,小数点后保留两位有效数字)
(3)以频率估计概率,现从所有投资者中随机抽取4人,记年龄在
的人数为X,求X的分布列以及数学期望
.

(1)求图中a的值;
(2)求把黄金作为理财产品的投资者的年龄的中位数以及平均数;(结果用小数表示,小数点后保留两位有效数字)
(3)以频率估计概率,现从所有投资者中随机抽取4人,记年龄在


从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图),

(1)由图中数据求a的值;
(2)若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为多少?
(3)估计这所小学的小学生身高的众数,中位数(保留两位小数)及平均数.

(1)由图中数据求a的值;
(2)若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为多少?
(3)估计这所小学的小学生身高的众数,中位数(保留两位小数)及平均数.
某学校为了解本校文、理科学生的学业水平模拟测试数学成绩情况,分别从理科班学生中随机抽取
人的成绩得到样本甲,从文科班学生中随机抽取
人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:

甲样本数据直方图

乙样本数据直方图
已知乙样本中数据在
的有
个.
(1)求
和乙样本直方图中
的值;
(2)试估计该校理科班学生本次模拟测试数学成绩的平均值和文科班学生本次模拟测试数学成绩的中位数(同一组中的数据用该组区间中点值为代表).



甲样本数据直方图

乙样本数据直方图
已知乙样本中数据在


(1)求


(2)试估计该校理科班学生本次模拟测试数学成绩的平均值和文科班学生本次模拟测试数学成绩的中位数(同一组中的数据用该组区间中点值为代表).
为了解观众对某综艺节目的评价情况,栏目组随机抽取了
名观众进行评分调查(满分
分),并统计得到如图所示的频率分布直方图,以下说法错误的是( )




A.参与评分的观众评分在![]() ![]() |
B.观众评分的众数约为![]() |
C.观众评分的平均分约为![]() |
D.观众评分的中位数约为![]() |
某校从参加某次知识竞赛测试得学生中随机抽取60名学生,将其成绩(百分制均为整数)分成6段
,
,…,
后得到如下部分频率直方分布图,观察图形得信息,回答下列问题:

(1)求分数在
内的频率;
(2)若用样本估计总体,已知该校参加知识竞赛一共有300人,请估计本次考试成绩不低于80分的人数;
(3)统计方法中,同一组数据常用该组区间中点值作为代表,据此估计本次考试的平均分.




(1)求分数在

(2)若用样本估计总体,已知该校参加知识竞赛一共有300人,请估计本次考试成绩不低于80分的人数;
(3)统计方法中,同一组数据常用该组区间中点值作为代表,据此估计本次考试的平均分.