- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- + 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示的茎叶图记录了甲、乙两组各四名同学的投篮命中次数, 乙组记录中有一个数据模糊,无法确认, 在图中以
表示.

(Ⅰ)如果乙组同学投篮命中次数的平均数为
, 求
及乙组同学投篮命中次数的方差;
(Ⅱ)在(Ⅰ)的条件下, 分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名, 记事件A:“两名同学的投篮命中次数之和为17”, 求事件A发生的概率.


(Ⅰ)如果乙组同学投篮命中次数的平均数为


(Ⅱ)在(Ⅰ)的条件下, 分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名, 记事件A:“两名同学的投篮命中次数之和为17”, 求事件A发生的概率.
“日行一万步,健康你一生”的养生观念已经深入人心,由于研究性学习的需要,某大学生收集了手机“微信运动”团队中特定甲、乙两个班级
名成员一天行走的步数,然后采用分层抽样的方法按照
,
,
,
分层抽取了20名成员的步数,并绘制了如下尚不完整的茎叶图(单位:千步):

已知甲、乙两班行走步数的平均值都是44千步.
(1)求
的值;
(2)(ⅰ)若
,求甲、乙两个班级100名成员中行走步数在
,
,
,
各层的人数;
(ⅱ)若估计该团队中一天行走步数少于40千步的人数比处于
千步的人数少12人,求
的值.






已知甲、乙两班行走步数的平均值都是44千步.
(1)求

(2)(ⅰ)若





(ⅱ)若估计该团队中一天行走步数少于40千步的人数比处于


如图,茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为( )
甲 | 组 | | | 乙组 | |
| 9 | 0 | 9 | | |
x | 2 | 1 | 5 | y | 8 |
7 | 4 | 2 | 4 | | |
A.2,5 | B.5,5 |
C.5,8 | D.8,8 |
“日行一万步,健康你一生”的养生观念已经深入人心,由于研究性学习的需要,某大学生收集了手机“微信运动”团队中特定甲、乙两个班级
名成员一天行走的步数,然后采用分层抽样的方法按照
,
,
,
分层抽取了
名成员的步数,并绘制了如下尚不完整的茎叶图(单位:千步);已知甲、乙两班行走步数的平均值都是
千步.

(1)求
,
的值;
(2)若估计该团队中一天行走步数少于
千步的人数比处于
千步的人数少
人,求
的值.








(1)求


(2)若估计该团队中一天行走步数少于




某班级有50名同学,一次数学测试平均成绩是92,其中学号为前30名的同学平均成绩为90,则学号为后20名同学的平均成绩为_____.
甲、乙两个篮球队在4次不同比赛中的得分情况如下:
乙队记录中有一个数字模糊(即表中阴影部分),无法确认,假设这个数字具有随机性,并用
表示.
(Ⅰ)在4次比赛中,求乙队平均得分超过甲队平均得分的概率;
(Ⅱ)当
时,分别从甲、乙两队的4次比赛中各随机选取1次,记这2个比赛得分之差的绝对值为
,求随机变量
的分布列;
(Ⅲ)如果乙队得分数据的方差不小于甲队得分数据的方差,写出
的取值集合.(结论不要求证明)
甲队 | 88 | 91 | 92 | 96 |
乙队 | 89 | 93 | 9▓ | 92 |
乙队记录中有一个数字模糊(即表中阴影部分),无法确认,假设这个数字具有随机性,并用

(Ⅰ)在4次比赛中,求乙队平均得分超过甲队平均得分的概率;
(Ⅱ)当



(Ⅲ)如果乙队得分数据的方差不小于甲队得分数据的方差,写出

某车间将
名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的茎叶图如图,已知两组技工在单位时间内加工的合格零件的平均数都为
.

(1)求
,
的值;
(2)求甲、乙两组技工在单位时间内加工的合格零件的方差
和
,并由此分析两组技工的加工水平;
(3)质检部门从该车间甲、乙两组技工中各随机抽取一名,对其加工的零件进行检测,若两人加工的合格零件个数之和大于
,则称该车间“质量合格”,求该车间“质量合格”的概率.
附:方差
,其中
为数据
的平均数



(1)求


(2)求甲、乙两组技工在单位时间内加工的合格零件的方差


(3)质检部门从该车间甲、乙两组技工中各随机抽取一名,对其加工的零件进行检测,若两人加工的合格零件个数之和大于

附:方差



一名篮球运动员在最近6场
比赛中所得分数的茎叶图如图所示,由于疏忽,茎叶图中的两个数据上出现了污点,导致这两个数字无法辨认,但统计员记得除掉污点2处的数字不影响整体中位数,且这六个数据的平均数为17,则污点1,2处的数字分别为( )



A.5,7 | B.5,6 | C.4,5 | D.5,5 |
某中学高三年级从甲、乙两个班级各选出7名学生参加数学基本公式大赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.

(1)求x和y的值;
(2)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.

(1)求x和y的值;
(2)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.