- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙两台机床同时生产一种零件,在10天中,两台机床每天生产的次品数分别为:
甲 0 1 0 2 2 0 3 1 2 4
乙 2 3 1 1 0 2 1 1 0 1
分别计算这两组数据的平均数和标准差,从计算结果看,哪台机床的性能更好?
甲 0 1 0 2 2 0 3 1 2 4
乙 2 3 1 1 0 2 1 1 0 1
分别计算这两组数据的平均数和标准差,从计算结果看,哪台机床的性能更好?
某体校甲、乙两个运动队各有6名编号为1,2,3,4,5,6的队员进行实弹射击比赛,每人射击1次,击中的环数如表:
若选择一个队伍参加比赛,应该选择哪一个队?
| 1号 | 2号 | 3号 | 4号 | 5号 | 6号 |
甲队 | 6 | 7 | 7 | 8 | 7 | 7 |
乙队 | 6 | 7 | 6 | 7 | 9 | 7 |
若选择一个队伍参加比赛,应该选择哪一个队?
在一次演讲比赛中,七位评委为其中一位选手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7.去掉一个最高分和一个最低分后的平均分为________.
计算下列各组数的平均数与方差:
(1)90,92,92,93,93; (2)0,2,2,3,3;
(3)
,0,0,1,1; (4)900,920,920,930,930.
(1)90,92,92,93,93; (2)0,2,2,3,3;
(3)

已知一组数据按从小到大排列为
,0,4,x,6,15,且这组数据的中位数是5,那么数据的众数是________,平均数是________.

记100,100,300,500,500的平均数为
,标准差为
;200,200,300,400,400的平均数为
,标准差为
,比较
与
的大小,
与
的大小.








某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:m)如下:
甲:1.70,1.65,1.68,1.69,1.72,1.73,1.68,1.67;
乙:1.60,1.73,1.72,1.61,1.62,1.71,1.70,1.75.
经预测,跳高1.65m就很可能获得冠军.该校为了获取冠军,可能选哪位选手参赛?若预测跳高1.70m方可获得冠军呢?
甲:1.70,1.65,1.68,1.69,1.72,1.73,1.68,1.67;
乙:1.60,1.73,1.72,1.61,1.62,1.71,1.70,1.75.
经预测,跳高1.65m就很可能获得冠军.该校为了获取冠军,可能选哪位选手参赛?若预测跳高1.70m方可获得冠军呢?
某工厂人员及工资构成如下表:
(1)指出这个问题中的众数、中位数、平均数.
(2)这个问题中,平均数能客观地反映该工厂的工资水平吗?为什么?
人员 | 经理 | 管理人员 | 高级技工 | 工人 | 学徒 | 合计 |
周工资/元 | 2200 | 1250 | 1220 | 1200 | 490 | |
人数 | 1 | 6 | 5 | 10 | 1 | 23 |
(1)指出这个问题中的众数、中位数、平均数.
(2)这个问题中,平均数能客观地反映该工厂的工资水平吗?为什么?
利用节中100户居民用户的月均用水量的调查数据,计算样本数据的平均数和中位数,并据此估计全市居民用户月均用水量的平均数和中位数.
9.0 13.6 14.9 5.9 4.0 7.1 6.4 5.4 19.4 2.0
2.2 8.6 13.8 5.4 10.2 4.9 6.8 14.0 2. 0 10.5
2.1 5.7 5.1 16.8 6.0 11.1 1.3 11.2 7.7 4.9
2.3 10.0 16.7 12.0 12.4 7.8 5.2 13.6 2.6 22.4
3.6 7.1 8.8 25.6 3.2 18.3 5.1 2.0 3.0 12.0
22.2 10.8 5.5 2.0 24.3 9.9 3.6 5.6 4.4 7.9
5.1 24.5 6.4 7.5 4.7 20.5 5.5 15.7 2.6 5.7
5.5 6.0 16.0 2.4 9.5 3.7 17.0 3.8 4.1 2.3
5.3 7.8 8.1 4.3 13.3 6.8 1.3 7.0 4.9 1.8
7.1 28.0 10.2 13.8 17.9 10.1 5.5 4.6 3.2 21.6
9.0 13.6 14.9 5.9 4.0 7.1 6.4 5.4 19.4 2.0
2.2 8.6 13.8 5.4 10.2 4.9 6.8 14.0 2. 0 10.5
2.1 5.7 5.1 16.8 6.0 11.1 1.3 11.2 7.7 4.9
2.3 10.0 16.7 12.0 12.4 7.8 5.2 13.6 2.6 22.4
3.6 7.1 8.8 25.6 3.2 18.3 5.1 2.0 3.0 12.0
22.2 10.8 5.5 2.0 24.3 9.9 3.6 5.6 4.4 7.9
5.1 24.5 6.4 7.5 4.7 20.5 5.5 15.7 2.6 5.7
5.5 6.0 16.0 2.4 9.5 3.7 17.0 3.8 4.1 2.3
5.3 7.8 8.1 4.3 13.3 6.8 1.3 7.0 4.9 1.8
7.1 28.0 10.2 13.8 17.9 10.1 5.5 4.6 3.2 21.6