- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了选拔参加自行车比赛的选手,对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
(1)画出茎叶图,由茎叶图分别求出甲、乙运动员的中位数;
(2)估计甲、乙两运动员的最大速度的平均数和方差,并判断谁参加比赛更合适.
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)画出茎叶图,由茎叶图分别求出甲、乙运动员的中位数;
(2)估计甲、乙两运动员的最大速度的平均数和方差,并判断谁参加比赛更合适.
对划艇运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度(单位:
)的数据如下:
根据以上数据,试判断他们谁更优秀.

甲 | 2.7,3.8,3.0,3.7,3.5,3.1; |
乙 | 3.3,2.9,3.8,3.4,2.8,3.6. |
根据以上数据,试判断他们谁更优秀.
如图所示是小王与小张二人参加某射击比赛的预赛的五次测试成绩的折线图,设小王与小张成绩的样本平均数分别为
和
,方差分别为
和
,则( )






A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
已知总体划分为3层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:
.记总的样本平均数为
,样本方差为
.证明:
(1)
;
(2)
.



(1)

(2)

甲、乙两个班级,一次数学考试的分数排序如下:
甲班 51 54 59 60 64 68 68 68 70 71
72 72 74 76 77 78 79 79 80 80
82 85 85 86 86 87 87 87 88 89
90 90 91 96 97 98 98 98 100 100
乙班 61 63 63 66 70 71 71 73 75 75
76 79 79 80 80 80 81 81 82 82
83 83 83 84 84 84 85 85 85 85
85 85 86 87 87 88 90 91 94 98
请你就这次考试成绩,对两个班级的数学学习情况进行评价
甲班 51 54 59 60 64 68 68 68 70 71
72 72 74 76 77 78 79 79 80 80
82 85 85 86 86 87 87 87 88 89
90 90 91 96 97 98 98 98 100 100
乙班 61 63 63 66 70 71 71 73 75 75
76 79 79 80 80 80 81 81 82 82
83 83 83 84 84 84 85 85 85 85
85 85 86 87 87 88 90 91 94 98
请你就这次考试成绩,对两个班级的数学学习情况进行评价
一家水果店的店长为了解本店苹果的日销售情况,记录了过去30天苹果的日销售量(单位:kg),结果如下:
83,96,107,91,70,75,94,80,80,100,
75,99,117,89,74,94,84,85,101,87.
93,85,107,99,55,97,86,84,85,104
(1)请计算该水果店过去30天苹果日销售量的中位数、平均数、极差和标准差
(2)一次进货太多,水果会变得不新鲜;进货太少,又不能满足顾客的需求,店长希望每天的苹果尽量新鲜,又能80%地满足顾客的需求(在100天中,大约有80天可以满足顾客的需求),请问,每天应该进多少千克苹果?
83,96,107,91,70,75,94,80,80,100,
75,99,117,89,74,94,84,85,101,87.
93,85,107,99,55,97,86,84,85,104
(1)请计算该水果店过去30天苹果日销售量的中位数、平均数、极差和标准差
(2)一次进货太多,水果会变得不新鲜;进货太少,又不能满足顾客的需求,店长希望每天的苹果尽量新鲜,又能80%地满足顾客的需求(在100天中,大约有80天可以满足顾客的需求),请问,每天应该进多少千克苹果?