- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某班有50名学生,某次数学考试的成绩经计算得到的平均分数是70分,标准差是s,后来发现记录有误,某甲得70分误记为40分,某乙得50分误记为80分,更正后重新计算得标准差为s1,则s与s1之间的大小关系是 ( )
A.s=s1 | B.s<s1 |
C.s>s1 | D.不能确定 |
在了解全校学生每年平均阅读了多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为5,方差为9;乙同学抽取了一个容量为8的样本,并算得样本的平均数为6,方差为16.已知甲、乙两同学抽取的样本合在一起组成一个容量为18的样本,求合在一起后的样本均值与样本方差.
有一种鱼的身体吸收汞,一定量身体中汞的含量超过其体重的1.00ppm(即百万分之一)的鱼被人食用后,就会对人体产生危害.在30条鱼的样本中发现的汞含量(单位:ppm)如下:
0.07 0.24 0.95 0.98 1.02 0.98 1.37 1.40 0.39 1.02
1.44 1.58 0.54 1.08 0.61 0.72 1.20 1.14 1.62 1.68
1.85 1.20 0.81 0.82 0.84 1.29 1.26 2.10 0.91 1.31
(1)请用合适的统计图描述上述数据,并分析这30条鱼的汞含量的分布特点;
(2)求出上述样本数据的平均数和标准差;
(3)从实际情况看,许多鱼的汞含量超标的原因是这些鱼在出售之前没有被检测过你认为每批这种鱼的平均承含量都比1.00ppm大吗?
(4)在上述样本中,有多少条鱼的汞含量在以平均数为中心、2倍标准差的范围内?
0.07 0.24 0.95 0.98 1.02 0.98 1.37 1.40 0.39 1.02
1.44 1.58 0.54 1.08 0.61 0.72 1.20 1.14 1.62 1.68
1.85 1.20 0.81 0.82 0.84 1.29 1.26 2.10 0.91 1.31
(1)请用合适的统计图描述上述数据,并分析这30条鱼的汞含量的分布特点;
(2)求出上述样本数据的平均数和标准差;
(3)从实际情况看,许多鱼的汞含量超标的原因是这些鱼在出售之前没有被检测过你认为每批这种鱼的平均承含量都比1.00ppm大吗?
(4)在上述样本中,有多少条鱼的汞含量在以平均数为中心、2倍标准差的范围内?
某学校为了了解学生课外阅读情况,随机调查了50名学生,得到他们在每一天各自课外阅读所用时间的数据(其中A,B,C,D,E分别表示课外阅读时间为
,
,
,
,
),结果用条形统计图表示如图,根据条形统计图估计该校全体学生这一天平均每人的课外阅读时间为( )







A.![]() | B.![]() | C.![]() | D.![]() |
有关部门要了解甲型H1N1流感预防知识在学校的普及情况,特制了一份有10道题的问卷到各学校进行问卷调查.某中学A,B两个班各被随机抽取了5名学生接受问卷调查,A班5名学生得分分别为5,8,9,9,9;B班5名学生得分分别为6,7,8,9,10(单位:分).请你估计A,B两个班中哪个班的预防知识的问卷得分要稳定一些.
在某项体育比赛中,七位裁判为一选手打出的分数如下:
9 89 90 95 93 94 93
去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
9 89 90 95 93 94 93
去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
A.92,2 | B.92,2.8 | C.93,2 | D.93,2.8 |
(本小题满分12分)某校团委会组织该校高中一年级某班以小组为单位利用周末时间进行了一次社会实践活动,且每个小组有
名同学,在实践活动结束后,学校团委会对该班的所有同学都进行了测评,该班的
两个小组所有同学所得分数(百分制)的茎叶图如图所示,其中
组一同学的分数已被污损,但知道
组学生的平均分比
组学生的平均分高
分.

(Ⅰ)若在
组学生中随机挑选
人,求其得分超过
分的概率;
(Ⅱ)现从
组这
名学生中随机抽取
名同学,设其分数分别为
,求
的概率.







(Ⅰ)若在



(Ⅱ)现从





某驾校为了保证学员科目二考试的通过率,要求学员在参加正式考试(下面简称正考)之 前必须参加预备考试(简称预考),且在预考过程中评分标准得以细化,预考成绩合格者才能参加正考.现将10名学员的预考成绩绘制成茎叶图,规定预考成绩85分以上为合格,不低于90分为优秀.若上述数据的中位数为85.5,平均数为83.

(Ⅰ)求
的值,指出该组数据的众数,并根据平均数以及参加正考的成绩标准对该驾校学员的学习情况作简单评价;
(Ⅱ)若在上述可以参加正考的学员中随机抽取2人,求其中恰有一人成绩优秀的概率.

(Ⅰ)求

(Ⅱ)若在上述可以参加正考的学员中随机抽取2人,求其中恰有一人成绩优秀的概率.
某车间20名工人年龄数据如下表:
(1)求这20名工人年龄的众数与平均数;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.
年龄(岁) | 19 | 24 | 26 | 30 | 34 | 35 | 40 | 合计 |
工人数(人) | 1 | 3 | 3 | 5 | 4 | 3 | 1 | 20 |
(1)求这20名工人年龄的众数与平均数;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.