- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如果数据x1,x2,…,xn的平均数是
,方差是s2,则3x1+2,3x2+2,…,3xn+2的平均数和方差分别是 ( )

A.![]() | B.3![]() |
C.3![]() | D.3![]() |
某纺织厂为了生产一种高端布料,准备从
农场购进一批优质棉花,厂方技术人员从
农场存储的优质棉花中随机抽取了
处棉花,分别测量了其纤维长度(单位:
)的均值,收集到
个样本数据,并制成如下频数分布表:

(1)求这
个样本数据的平均数和样本方差(同一组数据用该区间的中点值作代表);
(2)将收集到的数据绘制成直方图可以认为这批棉花的纤维长度服从分布
,其中
.
①利用正态分布,求
;
②纺织厂将
农场送来的这批优质棉进行二次检验,从中随机抽取
处测量其纤维均值
,数据如下:

若
个样本中纤维均值
的频率不低于①中
,即可判断该批优质棉花合格,否则认为农场运送是掺杂了次品,判断该批棉花不合格.按照此依据判断
农场送来的这批棉花是否为合格的优质棉花,并说明理由.
附:若
,则








(1)求这

(2)将收集到的数据绘制成直方图可以认为这批棉花的纤维长度服从分布


①利用正态分布,求

②纺织厂将




若




附:若




10名工人生产某一零件,生产的件数分别是10,12,14,14,15,15,16,17,17,17. 设其平均数为a,中位数为b,众数为c,则( )
A.a>b>c | B.b>c>a |
C.c>a>b | D.c>b>a |
已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为
,方差为
,则


A.![]() | B.![]() | C.![]() | D.![]() |
党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一,为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村扶贫. 此帮扶单位为了了解某地区贫困户对其所提供的帮扶的满意度,随机调查了40个贫困户,得到贫困户的满意度评分如下:
用系统抽样法从40名贫困户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.
(1)请你列出抽到的10个样本的评分数据;
(2)计算所抽到的10个样本的均值
和方差
;
(3)在(2)条件下,若贫困户的满意度评分在
之间,则满意度等级为“
级”.运用样本估计总体的思想,现从(1)中抽到的10个样本的满意度为“
级”贫困户中随机地抽取2户,求所抽到2户的满意度均评分均“超过80”的概率.
(参考数据:
)
贫困户编号 | 评分 | | 贫困户编号 | 评分 | | 贫困户编号 | 评分 | | 贫困户编号 | 评分 |
1 2 3 4 5 6 7 8 9 10 | 78 73 81 92 95 85 79 84 63 86 | 11 12 13 14 15 16 17 18 19 20 | 88 86 95 76 97 78 88 82 76 89 | 21 22 23 24 25 26 27 28 29 30 | 79 83 72 74 91 66 80 83 74 82 | 31 32 33 34 35 36 37 38 39 40 | 93 78 75 81 84 77 81 76 85 89 |
用系统抽样法从40名贫困户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.
(1)请你列出抽到的10个样本的评分数据;
(2)计算所抽到的10个样本的均值


(3)在(2)条件下,若贫困户的满意度评分在



(参考数据:

某班有
名学生,在一次考试中统计出平均分数为
,方差为
,后来发现有
名同学的成绩有误,甲实得
分却记为
分,乙实得
分却记为
分,更正后平均分和方差分别是( )








A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
2019年是新中国成立70周年,某学校为庆祝新中国成立70周年,举办了“我和我的祖国”演讲比赛,某选手的6个得分去掉一个最高分,去掉一个最低分,4个剩余分数的平均分为91.现场制作的6个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以
表示,则4个剩余分数的方差为( )



A.1 | B.![]() | C.4 | D.6 |
某汽车租赁公司为了调查A, B两种车型的出租情况,现随机抽取这两种车型各50辆,分别统计了每辆车在某个星期内的出租天数,统计数据如下表:
A型车
出租天数 | 3 | 4 | 5 | 6 | 7 |
车辆数 | 3 | 30 | 5 | 7 | 5 |
B型车
出租天数 | 3 | 4 | 5 | 6 | 7 |
车辆数 | 10 | 10 | 15 | 10 | 5 |
(1)试根据上面的统计数据,判断这两种车型在本星期内出租天数的方差的大小关系(只需写出结果);
(2)现从出租天数为3天的汽车(仅限A, B两种车型)中随机抽取一辆,试估计这辆汽车是A型车的概率;
(3)如果两种车型每辆车每天出租获得的利润相同,该公司需要购买一辆汽车,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.
某家电专卖店试销A、B、C三种新型空调,连续五周销售情况如表所示:
第一周 第二周 第三周 第四周 第五周
A型数量/台 12 8 15 22 18
B型数量/台 7 12 10 10 12
C型数量/台

(I)求A型空调平均每周的销售数量;
(Ⅱ)为跟踪调查空调的使用情况,从该家电专卖店第二周售出的A、B型空调销售记录中,随机抽取一台,求抽到B型空调的概率;
(III)已知C型空调连续五周销量的平均数为7,方差为4,且每周销售数量
互不相同,求C型空调这五周中的最大销售数量。(只需写出结论)
第一周 第二周 第三周 第四周 第五周
A型数量/台 12 8 15 22 18
B型数量/台 7 12 10 10 12
C型数量/台





(I)求A型空调平均每周的销售数量;
(Ⅱ)为跟踪调查空调的使用情况,从该家电专卖店第二周售出的A、B型空调销售记录中,随机抽取一台,求抽到B型空调的概率;
(III)已知C型空调连续五周销量的平均数为7,方差为4,且每周销售数量
