- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计,请根据下面尚未完成并有局部污损的频率分布表(如图所示),解决下列问题.
(1)求出a,b的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.
①求所抽取的2名同学中至少有1名同学来自第5组的概率;
②求所抽取的2名同学来自同一组的概率.
组别 | 分组 | 频数 | 频率 |
第1组 | [50,60) | 8 | 0.16 |
第2组 | [60,70) | a | ■ |
第3组 | [70,80) | 20 | 0.40 |
第4组 | [80,90) | ■ | 0.08 |
第5组 | [90,100] | 2 | b |
合计 | | ■ | ■ |
(1)求出a,b的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.
①求所抽取的2名同学中至少有1名同学来自第5组的概率;
②求所抽取的2名同学来自同一组的概率.
随着医院对看病挂号的改革,网上预约成为了当前最热门的就诊方式,这解决了看病期间病人插队以及医生先治疗熟悉病人等诸多问题;某医院研究人员对其所在地区年龄在10~60岁间的
位市民对网上预约挂号的了解情况作出调查,并将被调查的人员的年龄情况绘制成频率分布直方图,如下图所示.

(Ⅰ)若被调查的人员年龄在20~30岁间的市民有300人,求被调查人员的年龄在40岁以上(含40岁)的市民人数;
(Ⅱ)若按分层抽样的方法从年龄在
以内及
以内的市民中随机抽取5人,再从这5人中随机抽取2人进行调研,求抽取的2人中,至多1人年龄在
内的概率.


(Ⅰ)若被调查的人员年龄在20~30岁间的市民有300人,求被调查人员的年龄在40岁以上(含40岁)的市民人数;
(Ⅱ)若按分层抽样的方法从年龄在



.“沃尔玛”商场在国庆“62”黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如右下图所示.已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.


对经过某路段的汽车进行车速统计,得到频率分布直方图如图所示,若本路段限速60
,且每天经过该路段的车辆为100辆,则其中超速的车辆大约有( )



A.80辆 | B.60辆 | C.40辆 | D.20辆 |
某校高三年级进行了一次学业水平测试,用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计,成绩的分组及各组的频数如下:
,2;
,3;
,10;
15;
,12;
,8.
(1)完成样本的频率分布表,画出频率分布直方图;

(2)估计成绩在85分以下的学生比例;
(3)请你根据以上信息去估计样本的众数、中位数、平均数(精确到0.01).




15;


(1)完成样本的频率分布表,画出频率分布直方图;

(2)估计成绩在85分以下的学生比例;
(3)请你根据以上信息去估计样本的众数、中位数、平均数(精确到0.01).
某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图,其中前三段的频率成等比数列.
(Ⅰ)求图中实数a,b的值;
(Ⅱ)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于80分的人数;
(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值大于10的概率.
某年级共有800名学生,为了了解一次数学测试成绩情况,从中随机抽取部分学生,将他们的数学成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,频率分布直方图如图.据此估计这次测试数学成绩不低于80分的学生人数为( )


A.320 | B.300 |
C.220 | D.200 |
某校对2000名高一新生进行英语特长测试选拔,现抽取部分学生的英语成绩,将所得数据整理后得出频率分布直方图如图所示,图中从左到右各小长方形面积之比为
,第二小组频数为12.

(Ⅰ)求第二小组的频率及抽取的学生人数;
(Ⅱ)若分数在120分以上(含120分)才有资格被录取,约有多少学生有资格被录取?
(Ⅲ)学校打算从分数在
和
分内的学生中,按分层抽样抽取4人进行改进意见问卷调查,若调查老师随机从这4人的问卷中(每人一份)随机抽取两份调阅,求这两份问卷都来自英语测试成绩在
分的学生的概率.


(Ⅰ)求第二小组的频率及抽取的学生人数;
(Ⅱ)若分数在120分以上(含120分)才有资格被录取,约有多少学生有资格被录取?
(Ⅲ)学校打算从分数在



高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组
,第二组
,…,第五组
,如图是按上述分组方法得到的频率分布直方图.

(1)请根据频率分布直方图估计该组数据的众数和中位数(精确到0.1);
(2)从成绩介于
和
两组的人中任取2人,求两人分布来自不同组的概率.




(1)请根据频率分布直方图估计该组数据的众数和中位数(精确到0.1);
(2)从成绩介于


某读者协会为了了解该地区居民睡前看书的时间情况,从该地区睡前看书的居民中随机选取了n人进行调查,现将调查结果进行统计得到如图所示的频率分布直方图.则下列说法正确的是( )
A.睡前看书时间介于40~50分钟的频率为0.03 |
B.睡前看书时间低于30分钟的频率为0.67 |
C.若n=1000,则可估计本次调查中睡前看书时间介于30~50分钟的有67人 |
D.若n=1000,则可估计本次调查中睡前看书时间介于20~40分钟的有600人 |