- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在
(单位:分钟)内的学生人数为____.


某校初三年级有
名学生,随机抽查了
名学生,测试
分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )





A.该校初三年级学生![]() ![]() |
B.该校初三年级学生![]() ![]() |
C.该校初三年级学生![]() ![]() ![]() |
D.该校初三年级学生![]() ![]() ![]() |
某中学有初中学生1800人,高中学生1200人.为了解全校学生本学期开学以来的课外阅读时间,学校采用分层抽样方法,从中抽取了100名学生进行问卷调查.将样本中的“初中学生”和“高中学生”,按学生的课外阅读时间(单位:小时)各分为5组:
,得其频率分布直方图如图所示.
(1)估计全校学生中课外阅读时间在
小时内的总人数约是多少;
(2)从全校课外阅读时间不足10个小时的样本学生中随机抽取3人,求抽出的3人中至少有1个高中生的概率.

(1)估计全校学生中课外阅读时间在

(2)从全校课外阅读时间不足10个小时的样本学生中随机抽取3人,求抽出的3人中至少有1个高中生的概率.

某市高中全体学生参加某项测评,按得分评为
两类(评定标准见表1).根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为
的学生中有40%是男生,等级为
的学生中有一半是女生.等级为
和
的学生统称为
类学生,等级为
和
的学生统称为
类学生.整理这10000名学生的得分数据,得到如图2所示的频率分布直方图,
表1

(I)已知该市高中学生共20万人,试估计在该项测评中被评为
类学生的人数;
(Ⅱ)某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名
类学生”的概率;
(Ⅲ)在这10000名学生中,男生占总数的比例为51%,
类女生占女生总数的比例为
,
类男生占男生总数的比例为
,判断
与
的大小.(只需写出结论)









类别 | 得分(![]() | |
| ![]() | ![]() |
![]() | ![]() | |
| ![]() | ![]() |
![]() | ![]() |
表1

(I)已知该市高中学生共20万人,试估计在该项测评中被评为

(Ⅱ)某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名

(Ⅲ)在这10000名学生中,男生占总数的比例为51%,






随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,并整理得到如下频率分布直方图:

根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :

(Ⅰ)从甲大学中随机选出一名学生,试估计其“爱好”中华诗词的概率;
(Ⅱ)从两组“痴迷”的同学中随机选出2人,记
为选出的两人中甲大学的人数,求
的分布列和数学期望
;
(Ⅲ)试判断选出的这两组学生每天学习“中华诗词”时间的平均值
与
的大小,及方差
与
的大小.(只需写出结论)

根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :

(Ⅰ)从甲大学中随机选出一名学生,试估计其“爱好”中华诗词的概率;
(Ⅱ)从两组“痴迷”的同学中随机选出2人,记



(Ⅲ)试判断选出的这两组学生每天学习“中华诗词”时间的平均值




随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某大学社团为调查大学生对于“中华诗词”的喜好,在该校随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,并整理得到如下频率分布直方图:

根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :
(Ⅰ) 求
的值;
(Ⅱ) 从该大学的学生中随机选出一人,试估计其“爱好”中华诗词的概率;
(Ⅲ) 假设同组中的每个数据用该组区间的右端点值代替,试估计样本中40名学生每人每天学习“中华诗词”的时间.

根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :
学习时间 ![]() (分钟/天) | ![]() | ![]() | ![]() |
等级 | 一般 | 爱好 | 痴迷 |
(Ⅰ) 求

(Ⅱ) 从该大学的学生中随机选出一人,试估计其“爱好”中华诗词的概率;
(Ⅲ) 假设同组中的每个数据用该组区间的右端点值代替,试估计样本中40名学生每人每天学习“中华诗词”的时间.
某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20〜60岁的问卷中随机抽取了100份, 统计结果如下面的图表所示.

(1)分别求出n, a, b, c的值;
(2)从年龄在[40,60]答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[50,60] 的人中至少有1人被授予“环保之星”的概率.
年龄 分组 | 抽取份 数 | 答对全卷的人数 | 答对全卷的人数占本组的概率 |
[20,30) | 40 | 28 | 0.7 |
[30,40) | n | 27 | 0.9 |
[40,50) | 10 | 4 | b |
[50,60] | 20 | a | 0.1 |

(1)分别求出n, a, b, c的值;
(2)从年龄在[40,60]答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[50,60] 的人中至少有1人被授予“环保之星”的概率.
大庆一中从高二年级学生中随机捕取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),
[60,70),[70,80),[80,90),[90,1OO]加以统计,得到如图所不的频率分布直方图.已知高二年级共有学生1000名,据此估计,该模块测试成绩不低于60分的学生人数为______.
[60,70),[70,80),[80,90),[90,1OO]加以统计,得到如图所不的频率分布直方图.已知高二年级共有学生1000名,据此估计,该模块测试成绩不低于60分的学生人数为______.

从某校高中男生中随机选取100名学生,将他们的体重(单位:
)数据绘制成频率分布直方图,如图所示.

(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);
(2)若要从体重在
,
,
三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,求这2人中至少有1人体重在
内的概率.


(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);
(2)若要从体重在




某市电力公司为了制定节电方案,需要了解居民用电情况.通过随机抽样,电力公司获得了50户居民的月平均用电量,分为六组制出频率分布表和频率分布直方图(如图所示).


(1)求a,b的值;
(2)为了解用电量较大的用户用电情况,在第5、6两组用分层抽样的方法选取5户 .
①求第5、6两组各取多少户?
②若再从这5户中随机选出2户进行入户了解用电情况,求这2户中至少有一户月平均用电量在[1000,1200]范围内的概率.


(1)求a,b的值;
(2)为了解用电量较大的用户用电情况,在第5、6两组用分层抽样的方法选取5户 .
①求第5、6两组各取多少户?
②若再从这5户中随机选出2户进行入户了解用电情况,求这2户中至少有一户月平均用电量在[1000,1200]范围内的概率.