- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为推进农村经济结构调整,某乡村举办水果观光采摘节,并推出配套乡村游项目.现统计了4月份100名游客购买水果的情况,得到如图所示的频率分布直方图.

(1)若将购买金额不低于80元的游客称为“优质客户”,现用分层抽样的方法从样本的“优质客户”中抽取5人,求这5人中购买金额不低于100元的人数;
(2)从(1)中的5人中随机抽取2人作为幸运客户免费参加乡村游项目,请列出所有的基本事件,并求2人中至少有1人购买金额不低于100元的概率.

(1)若将购买金额不低于80元的游客称为“优质客户”,现用分层抽样的方法从样本的“优质客户”中抽取5人,求这5人中购买金额不低于100元的人数;
(2)从(1)中的5人中随机抽取2人作为幸运客户免费参加乡村游项目,请列出所有的基本事件,并求2人中至少有1人购买金额不低于100元的概率.
经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间
内(单位:克),统计质量的数据作出其频率分布直方图如图所示:

(1)按分层抽样的方法从质量落在
,
的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;
(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:
请你通过计算为该村选择收益最好的方案.
(参考数据:
)


(1)按分层抽样的方法从质量落在


(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:
A.所有黄桃均以20元/千克收购; |
B.低于350克的黄桃以5元/个收购,高于或等于350克的以9元/个收购. |
(参考数据:

手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:
(1)求直方图中a的值,并由频率分布直方图估计该单位职工一天步行数的中位数;
(2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数;

(3)在(2)的条件下,该单位从行走步数大于15000的3组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间(150,170]的概率.
(1)求直方图中a的值,并由频率分布直方图估计该单位职工一天步行数的中位数;
(2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数;

(3)在(2)的条件下,该单位从行走步数大于15000的3组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间(150,170]的概率.
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中
的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;
(3)若这100名学生语文成绩某些分数段的人数(
)与数学成绩相应分数段的人数(
)之比如下表所示,求数学成绩在[50,90)之外的人数.

(1)求图中

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;
(3)若这100名学生语文成绩某些分数段的人数(


分数段 | [50,60) | [60,70) | [70,80) | [80,90) |
![]() | 1:1 | 2:1 | 3:4 | 4:5 |

如图是统计某样本数据得到的频率分布直方图.已知该样本容量为300,根据此样本的频率分布直方图,估计样本数据落在[10,18)内的频数为( )


A.36 | B.48 | C.120 | D.144 |
某校统计了1000名学生的数学期末考试成绩,已知这1000名学生的成绩均在50分到150分之间,其频率分布直方图如图所示,则这1000名学生中成绩在130分以上的人数为( )


A.10 | B.20 | C.40 | D.60 |
上饶市在某次高三适应性考试中对数学成绩数据统计显示,全市10000名学生的成绩近似服从正态分布
,现某校随机抽取了50名学生的数学成绩分析,结果这50名学生的成绩全部介于85分到145分之间,现将结果按如下方式分为6组,第一组
,第二组
,…,第六组
,得到如图所示的频率分布直方图:

(1)试由样本频率分布直方图估计该校数学成绩的平均分数;
(2)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为
,求
的概率.
附:若
,则
,
,
.





(1)试由样本频率分布直方图估计该校数学成绩的平均分数;
(2)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为


附:若




从某小学随机抽取100名学生,将他们的身高(单位:cm)数据绘制成如图所示的频率分布直方图,则身高在[120,130)内的学生人数为__.

某公司为了解用户对其产品的满意度,从
两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到
地区用户满意度评分的频率分布直方图和
地区用户满意度评分的频数分布表.
地区用户满意度评分的频率分布直方图如下:

地区用户满意度评分的频数分布表如下:

(1)在图中作出
地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).
地区用户满意度评分的频率分布直方图

(2)根据用户满意度评分,将用户的满意度分为三个等级:

公司负责人为了解用户满意度情况,从B地区调查8户,其中有两户满意度等级是不满意.求从这8户中随机抽取2户检查,抽到不满意用户的概率.







(1)在图中作出



(2)根据用户满意度评分,将用户的满意度分为三个等级:

公司负责人为了解用户满意度情况,从B地区调查8户,其中有两户满意度等级是不满意.求从这8户中随机抽取2户检查,抽到不满意用户的概率.