- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某时段内共有100辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速超过60km/h的汽车数量为()


A.38辆 | B.28辆 | C.10辆 | D.5辆 |
国家每年都会对中小学生进行体质健康监测,一分钟跳绳是监测的项目之一.今年某小学对本校六年级300名学生的一分钟跳绳情况做了统计,发现一分钟跳绳个数最低为10,最高为189.现将跳绳个数分成
,
,
,
,
,
6组,并绘制出如下的频率分布直方图.

(1)若一分钟跳绳个数达到160为优秀,求该校六年级学生一分钟跳绳为优秀的人数;
(2)上级部门要对该校体质监测情况进行复查,发现每组男、女学生人数比例有很大差别,
组男、女人数之比为
,
组男、女人数之比为
,
组男、女人数之比为
,
组男、女人数之比为
,
组男、女人数之比为
,
组男、女人数之比为
.试估计此校六年级男生一分钟跳绳个数的平均数(同一组中的数据用该组区间的中点值作代表,结果保留整数).







(1)若一分钟跳绳个数达到160为优秀,求该校六年级学生一分钟跳绳为优秀的人数;
(2)上级部门要对该校体质监测情况进行复查,发现每组男、女学生人数比例有很大差别,












某快递公司收取快递费用的标准是:重量不超过
的包裹收费10元;重量超过
的包裹,除
收费10元之外,超过
的部分,每超出
(不足
,按
计算)需再收5元.该公司将最近承揽的100件包裹的重量统计如表:
公司对近60天,每天揽件数量统计如表:
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来3天内恰有2天揽件数在101~400之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?







包裹重量(单位:kg) | 1 | 2 | 3 | 4 | 5 |
包裹件数 | 43 | 30 | 15 | 8 | 4 |
公司对近60天,每天揽件数量统计如表:
包裹件数范围 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
包裹件数(近似处理) | 50 | 150 | 250 | 350 | 450 |
天数 | 6 | 6 | 30 | 12 | 6 |
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来3天内恰有2天揽件数在101~400之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?
某地区为了了解本年度数学竞赛成绩情况,从中随机抽取了
个学生的分数作为样本进行统计,按照
,
,
,
,
的分组作出频率分布直方图如图所示,已知得分在
的频数为20,且分数在70分及以上的频数为27.

(1)求样本容量
以及
,
的值;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中恰有一人得分在
内的概率.








(1)求样本容量



(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中恰有一人得分在

某电视台举行文艺比赛,并通过网络对比赛进行直播.比赛现场有5名专家评委给每位参赛选手评分,场外观众可以通过网络给每位参赛选手评分.每位选手的最终得分由专家评分和观众评分确定.某选手参与比赛后,现场专家评分情况如表;场外有数万名观众参与评分,将评分按照[7,8),[8,9),[9,10]分组,绘成频率分布直方图如图:

(1)求a的值,并用频率估计概率,估计某场外观众评分不小于9的概率;
(2)从5名专家中随机选取3人,X表示评分不小于9分的人数;从场外观众中随机选取3人,用频率估计概率,Y表示评分不小于9分的人数;试求E(X)与E(Y)的值;
(3)考虑以下两种方案来确定该选手的最终得分:方案一:用所有专家与观众的评分的平均数
作为该选手的最终得分,方案二:分别计算专家评分的平均数
和观众评分的平均数
,用
作为该选手最终得分.请直接写出
与
的大小关系.
专家 | A | B | C | D | E |
评分 | 9.6 | 9.5 | 9.6 | 8.9 | 9.7 |

(1)求a的值,并用频率估计概率,估计某场外观众评分不小于9的概率;
(2)从5名专家中随机选取3人,X表示评分不小于9分的人数;从场外观众中随机选取3人,用频率估计概率,Y表示评分不小于9分的人数;试求E(X)与E(Y)的值;
(3)考虑以下两种方案来确定该选手的最终得分:方案一:用所有专家与观众的评分的平均数






某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为
若低于60分的人数是15人,则该班的学生人数是( )



A.![]() | B.![]() | C.![]() | D.![]() |
某地气象局把当地某月(共30天)每一天的最低气温作了统计,并绘制了如下图所示的统计图,假设该月温度的中位数为
,众数为
,平均数为
,则( )





A.![]() | B.![]() |
C.![]() | D.![]() |
今年4月的“西安奔驰女车主哭诉维权事件”引起了社会的广泛关注,某汽车4S店为了调研公司的售后服务态度,对5月份到店维修保养的100位客户进行了回访调查,每位客户用10分制对该店的售后服务进行打分.现将打分的情况分成以下几组:第一组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10],得到频率分布直方图如图所示.已知第二组的频数为10.

(1)求图中实数a,b的值;
(2)求所打分值在[6,10]的客户人数;
(3)总公司规定,若4S店的客户回访平均得分低于7分,则将勒令其停业整顿.试用频率分布直方图的组中值对总体平均数进行估计,判断该4S店是否需要停业整顿.

(1)求图中实数a,b的值;
(2)求所打分值在[6,10]的客户人数;
(3)总公司规定,若4S店的客户回访平均得分低于7分,则将勒令其停业整顿.试用频率分布直方图的组中值对总体平均数进行估计,判断该4S店是否需要停业整顿.