- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随机抽取某校高一100名学生的期末考试英语成绩(他们的英语成绩都在80分
140分之间),将他们的英语成绩(单位:分)分成:
,
,
,
,
六组,得到如图所示的部分频率分布直方图,已知成绩处于
内与
内的频数之和等于成绩处于
内的频数,根据图中的信息,回答下列问题:

(1)求频率分布直方图中未画出的小矩形的面积之和;
(2)求成绩处于
内与
内的频率之差;
(3)用分层抽样的方法从成绩不低于120分的学生中选取一个容量为6的样本,将该样本看成一个总体,从中任选2人,记这2人中成绩低于130分的人数为
,求随机变量
的分布列及数学期望.










(1)求频率分布直方图中未画出的小矩形的面积之和;
(2)求成绩处于


(3)用分层抽样的方法从成绩不低于120分的学生中选取一个容量为6的样本,将该样本看成一个总体,从中任选2人,记这2人中成绩低于130分的人数为


一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如下表:
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为2:3.
(1)确定
,
,
,
的值,并补全频率分布直方图;

(2)①.试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;
②.若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
网购金额(单位:千元) | 频数 | 频率 | | 网购金额(单位:千元) | 频数 | 频率 |
[0,0.5) | 3 | 0.05 | | [1.5,2) | 15 | 0.25 |
[0.5,1) | ![]() | ![]() | | [2,2.5) | 18 | 0.30 |
[1,1.5) | 9 | 0.15 | | [2.5,3] | ![]() | ![]() |
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为2:3.
(1)确定





(2)①.试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;
②.若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
2018年中秋季到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量(单位:
)进行了问卷调查,得到如下频率分布直方图:

(1)求频率分布直方图中
的值;
(2)已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的
,请根据人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求?
(3)由频率分布直方图可以认为,该销售范围内消费者的月饼购买量
服从正态分布
,其中样本平均数
作为
的估计值,样本标准差
作为
的估计值,设
表示从该销售范围内的消费者中随机抽取10名,其月饼购买量位于
的人数,求
的数学期望.
附:经计算得
,若随机变量
服从正态分布
,则
,
.


(1)求频率分布直方图中

(2)已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的

(3)由频率分布直方图可以认为,该销售范围内消费者的月饼购买量









附:经计算得





某工厂从一批产品中随机抽取20件进行检测,如图是根据抽样检测后的产品净重(单位:克)数据的频率分布直方图,其中产品净重的范围是[140,200],样本数据分组为[140,150),[150,160),[160,170),[170,180),[180,190),[190,200].

(1)求图中a的值;
(2)若频率视为概率,从这批产品中有放回地随机抽取3件,求至少有2件产品的净重在[160,180)中的概率;
(3)若产品净重在[150,190)为合格产品,其余为不合格产品,从这20件抽样产品中任取2件,记X表示选到不合格产品的件数,求X的分布列和数学期望.

(1)求图中a的值;
(2)若频率视为概率,从这批产品中有放回地随机抽取3件,求至少有2件产品的净重在[160,180)中的概率;
(3)若产品净重在[150,190)为合格产品,其余为不合格产品,从这20件抽样产品中任取2件,记X表示选到不合格产品的件数,求X的分布列和数学期望.
某高校数学学院为了对2018年录取的大一新生有针对性地进行教学.从大一新生中随机抽取40名,对他们在2018年高考的数学成绩进行调查,统计发现40名新生的数学分数
分布在
内.当
时,其频率
.

(1)求
的值;
(2)请在答题卡中画出这40名新生高考数学分数的频率分布直方图,并估计这40名新生的高考数学分数的平均数(同一组中的数据用该区间的中点值作代表).
(3)若高考数学分数不低于120分的为优秀,低于120分的为不优秀,则按高考成绩优秀与否从这40名新生中用分层抽样的方法抽取4名学生,再从这4名学生中随机抽取2名,求这2名学生的高考成绩均为优秀的概率.





(1)求

(2)请在答题卡中画出这40名新生高考数学分数的频率分布直方图,并估计这40名新生的高考数学分数的平均数(同一组中的数据用该区间的中点值作代表).
(3)若高考数学分数不低于120分的为优秀,低于120分的为不优秀,则按高考成绩优秀与否从这40名新生中用分层抽样的方法抽取4名学生,再从这4名学生中随机抽取2名,求这2名学生的高考成绩均为优秀的概率.
某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在
内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图.




(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的平均数(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两 条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面
列联表,并回答是否有85%的把握认为“该企业生产的这 种产品的质量指标值与甲,乙两条流水线的选择有关”?
附:
(其中
为样本容量)





(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的平均数(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两 条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面

| 甲生产线 | 乙生产线 | 合计 |
合格品 | | | |
不合格品 | | | |
合计 | | | |
附:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩分成六段[40,50),[50,60)…[90,100]后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求第四小组的频率
;
(2)估计这次考试的平均分和中位数(精确到0.01);
(3)从成绩是40~50分及90~100分的学生中选两人,记他们的成绩分别为
,求满足“
”的概率.
(1)求第四小组的频率

(2)估计这次考试的平均分和中位数(精确到0.01);
(3)从成绩是40~50分及90~100分的学生中选两人,记他们的成绩分别为



某校某班在一次数学测验中,全班N名学生的数学成绩的频率分布直方图如下,已知分数在110~120的学生有14人.

(1)求总人数N和分数在120~125的人数n;
(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?

(1)求总人数N和分数在120~125的人数n;
(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?
某果农选取一片山地种植红柚,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间(40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的
倍.

(1)求
、
的值;
(2)求样本的平均数;
(3)从样本中产量在区间(50,60]上的果树里随机抽取两株,求产量在区间(55,60]上的果树至少有一株被抽中的概率.


(1)求


(2)求样本的平均数;
(3)从样本中产量在区间(50,60]上的果树里随机抽取两株,求产量在区间(55,60]上的果树至少有一株被抽中的概率.
从某电子商务平台随机抽取了1000位网上购物者(年消费都达到2000元),并对他们的年龄进行了调查,统计情况如下表所示:
该电子商务平台将年龄在
的人群定义为消费主力军,其它年龄段定义为消费潜力军.
(1)若该电子商务平台共10万位网上购物者,试估计消费主力军的人数;
(2)为了鼓励消费潜力军消费,该平台决定对年消费达到2000元的购物者发放代金券,消费主力军每人发放100元,消费潜力军每人发放200元.现采用分层抽样(按消费主力军与消费潜力军分层)的方式从参与调查的1000位网上购物者中抽取10人,并在这10人中随机抽取3人进行回访,求这3人获得代金券总金额
(单位:元)的分布列及数学期望.
年龄 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 100 | 150 | 400 | 200 | 100 | 50 |
该电子商务平台将年龄在

(1)若该电子商务平台共10万位网上购物者,试估计消费主力军的人数;
(2)为了鼓励消费潜力军消费,该平台决定对年消费达到2000元的购物者发放代金券,消费主力军每人发放100元,消费潜力军每人发放200元.现采用分层抽样(按消费主力军与消费潜力军分层)的方式从参与调查的1000位网上购物者中抽取10人,并在这10人中随机抽取3人进行回访,求这3人获得代金券总金额
