我市2016年11月1日11月30日对空气污染指数的监测数据如下(主要污染物可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,83,82,82,64,79,86,85,75,71,49,45.
样本频率分布表:
分组
频数
频率

2


1


4


6


10


 
 

2

 
(Ⅰ)完成频率分布表;
(Ⅱ)作出频率分布直方图;
(Ⅲ)根据国家标准,污染指数在050之间时,空气质量为优;在51100之间时为良;在101150之间时,为轻微污染;在151200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.
当前题号:1 | 题型:解答题 | 难度:0.99
x1x2,…,x2008x2009的方差为3,则3(x1-2),3(x2-2),…,3(x2008-2),3(x2009-2)的方差为______.
当前题号:2 | 题型:填空题 | 难度:0.99
已知某路段最高限速,电子监控测得连续6辆汽车的速度用茎叶图表示如下(单位:),若从中任取2辆,则恰好有1辆汽车超速的概率为(   )
A.B.C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后的方差是__________.
当前题号:4 | 题型:填空题 | 难度:0.99
从某校高中男生中随机抽取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图).若要从身高在三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,则这2人的身高不在同一组内的概率为__________
当前题号:5 | 题型:填空题 | 难度:0.99
下面茎叶图记录了甲、乙两班各六名同学一周的课外阅读时间(单位:小时),已知甲班数据的平均数为,乙班数据的中位数为,那么的位置应填__________,的位置应填__________.
当前题号:6 | 题型:填空题 | 难度:0.99
据统计,某物流公司每天的业务中,从甲地到乙地的可配送的货物量的频率分布直方图,如图所示,将频率视为概率,回答以下问题.

(1)求该物流公司每天从甲地到乙地平均可配送的货物量;
(2)该物流公司拟购置货车专门运营从甲地到乙地的货物,一辆货车每天只能运营一趟,每辆车每
趟最多只能装载40 件货物,满载发车,否则不发车。若发车,则每辆车每趟可获利1000 元;若未发车,
则每辆车每天平均亏损200 元。为使该物流公司此项业务的营业利润最大,该物流公司应该购置几辆货
车?
当前题号:7 | 题型:解答题 | 难度:0.99
某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元/件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.

(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);
(2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价(单位:元/件,整数)和销量(单位:件)()如下表所示:
售价
33
35
37
39
41
43
45
47
销量
840
800
740
695
640
580
525
460
 
①请根据下列数据计算相应的相关指数,并根据计算结果,选择合适的回归模型进行拟合;
②根据所选回归模型,分析售价定为多少时?利润可以达到最大.
 




49428.74
11512.43
175.26

124650
 
(附:相关指数
当前题号:8 | 题型:解答题 | 难度:0.99
甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示.则甲、乙、丙三人训练成绩方差的大小关系是( )
A.B.C.D.
当前题号:9 | 题型:单选题 | 难度:0.99
甲乙两名同学参加定点投篮测试,已知两人投中的概率分别是,假设两人投篮结果相互没有影响,每人各次投球是否投中也没有影响.
(Ⅰ)若每人投球3次(必须投完),投中2次或2次以上,记为达标,求甲达标的概率;
(Ⅱ)若每人有4次投球机会,如果连续两次投中,则记为达标.达标或能断定不达标,则终止投篮.记乙本次测试投球的次数为,求的分布列和数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99