- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.
(Ⅰ)设甲、乙两个班所抽取的10名同学成绩方差分别为
、
,比较
、
的大小(直接写出结果,不写过程);
(Ⅱ)从甲班10人任取2人,设这2人中及格的人数为X,求X的分布列和期望;
(Ⅲ)从两班这20名同学中各抽取一人,在已知有人及格的条件下,求抽到乙班同学不及格的概率.
(Ⅰ)设甲、乙两个班所抽取的10名同学成绩方差分别为




(Ⅱ)从甲班10人任取2人,设这2人中及格的人数为X,求X的分布列和期望;
(Ⅲ)从两班这20名同学中各抽取一人,在已知有人及格的条件下,求抽到乙班同学不及格的概率.

(Ⅰ)某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.设甲、乙两个班所抽取的10名同学成绩方差分别为
、
,比较
、
的大小(直接写结果,不必写过程);

(Ⅱ)设集合
,
,命题p:x∈A;命题q:x∈B,若p是q的必要条件,求实数m的取值范围.





(Ⅱ)设集合


某学生对自己在10次数学模考中满分是20分的填空题成绩进行统计,得分分别为15,17,14,10,15,17,17,16,14,12,设得分平均数为
,中位数为
,众数为
,则( )



A.![]() | B.![]() | C.![]() | D.![]() |
为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了了解这次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表和频率分布直方图,回答下面问题:

(1)结合图表信息,补全频率分布直方图;
(2)对于参加这次竞赛的900名学生,估计成绩不低于76分的约有多少人.

(1)结合图表信息,补全频率分布直方图;
(2)对于参加这次竞赛的900名学生,估计成绩不低于76分的约有多少人.
对400个某种型号的电子元件进行寿命追踪调查,其频率分布表如下表:

(I)在下图中补齐频率分布直方图;
(II)估计元件寿命在500800h以内的概率.
寿命(h) | 频率 |
500600 | 0.10 |
600700 | 0.15 |
700800 | 0.40 |
800900 | 0.20 |
9001000 | 0.15 |
合计 | 1 |

(I)在下图中补齐频率分布直方图;
(II)估计元件寿命在500800h以内的概率.
下列说法正确的是 ( )
A.已知购买一张彩票中奖的概率为![]() ![]() |
B.互斥事件一定是对立事件; |
C.如图,直线![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
D.若样本![]() ![]() ![]() ![]() |
某超市连锁店统计了城市甲、乙的各
台自动售货机在中午
至
间的销售金额,并用茎叶图表示如图.则有( )





A.甲城销售额![]() | B.甲城销售额多,乙城稳定 |
C.乙城销售额多,甲城稳定 | D.乙城销售额多,甲城不够稳定 |
某次月考后,从所有考生中随机抽取50名考生的数学成绩进行统计,并画出频率分布直方图如图所示,则该次考试数学成绩的众数的估计值为


A.70 | B.![]() | C.75 | D.80 |
一组数据共有7个数,记得其中有10,2,5,2,4,2,还有一个数没记清,但知道这组数的平均数、中位数、众数依次成等差数列,这个数的所有可能值的和为( )
A.-11 | B.3 | C.7 | D.9 |