- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某特长班有男生和女生各10人,统计他们的身高,其数据(单位:cm)如下面的茎叶图所示,则下列结论正确的是( )


A.女生身高的极差为12 | B.男生身高的均值较大 |
C.女生身高的中位数为165 | D.男生身高的方差较小 |
蚂蚁森林是支付宝客户端为首期“碳账户”设计的一款公益行动:用户通过步行、地铁出行、在线缴纳水电煤气费、网络挂号、网络购票等行为就会减少相应的碳排放量,可以用来在支付宝里养一棵虚拟的树.这棵树长大后,公益组织、环保企业等蚂蚁生态伙伴们可以在现实沙漠化地区(阿拉善、通辽、库布齐等)种下一棵实体的树目前通辽地区对部分基地樟子松幼苗的培育技术进行了改进,为了了解改进后的效果,现从改进前后的树苗培育基地各抽取了
株产品作为样本,检测其同样生长周期的高度(单位:
),若高度不低于
才适合移植,否则继续等待生长图1是改进前的样本的频率分布直方图,表2是改进后的样本频率分布表.
图1

表2技术改进后样本的频率分布表
(1)根据图1和表2提供的信息,试从移植率的角度对培育技术改进前后的优劣进行比较;
(2)估计培育技术未改进的基地树苗高度的平均数;
(3)在市场中,规定高度在
内的为三等苗,
内的为二等苗,
内的为一等苗.现从表2高度不低于
的树苗样本中采用分层抽样的方法抽取
株,再从这
株幼苗中随机抽取
株,求这
株中一、二、三等苗都有的概率.



图1

表2技术改进后样本的频率分布表
高度 | 频数 |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
(1)根据图1和表2提供的信息,试从移植率的角度对培育技术改进前后的优劣进行比较;
(2)估计培育技术未改进的基地树苗高度的平均数;
(3)在市场中,规定高度在








某校高二年级800名学生参加了地理学科考试,现从中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组
;第二组
;……;第六组
,并据此绘制了如图所示的频率分布直方图.

(1)求每个学生的成绩被抽中的概率;
(2)估计这次考试地理成绩的平均分和中位数;
(3)估计这次地理考试全年级80分以上的人数.




(1)求每个学生的成绩被抽中的概率;
(2)估计这次考试地理成绩的平均分和中位数;
(3)估计这次地理考试全年级80分以上的人数.
根据统计调查数据显示:某企业某种产品的质量指标值
服从正态分布
,从该企业生产的这种产品(数量很大)中抽取100件,测量这100件产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间
,
,
内的频率之比为
.

(1)求这100件产品质量指标值落在区间
内的频率;
(2)根据频率分布直方图求平均数
(同一组中的数据用该组区间的中点值作代表);
(3)若
取这100件产品指标的平均值
,从这种产品(数量很大)中任取3个,求至少有1个
落在区间
的概率.
参考数据:
,若
,则
;
;
.







(1)求这100件产品质量指标值落在区间

(2)根据频率分布直方图求平均数

(3)若




参考数据:





记“1,2,3,4,5”这组数据的方差为
,“98,99,100,102,
”这组数据的方差为
,若
,则
为( )





A.97 | B.101 | C.101或98.5 | D.103 |
在某次测量中得到的
样本数据如下:
,
,
,
,
,
;若
样本数据恰好是
样本数据每个数都减去
后所得的数据,则
,
两样本的下列数字特征相同的是( )












A.平均数 | B.方差 | C.众数 | D.中位数 |
在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02,前五个与后五个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160,则中间一组(即第五组)的频数为( )


A.12 | B.24 | C.36 | D.48 |