- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了更好地支持“中小型企业”的发展,某市决定对部分企业的税收进行适当的减免,某机构调查了当地的中小型企业年收入情况,并根据所得数据画出了样本的频率分布直方图,下面三个结论:

①样本数据落在区间
的频率为0.45;
②如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免税政策;
③样本的中位数为480万元.
其中正确结论的个数为( )

①样本数据落在区间

②如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免税政策;
③样本的中位数为480万元.
其中正确结论的个数为( )
A.0 | B.1 | C.2 | D.3 |
甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则以下四种说法中正确的个数为( )
①甲的成绩的平均数等于乙的成绩的平均数 ②甲的成绩的中位数大于乙的成绩的中位数
③甲的成绩的方差小于乙的成绩的方差 ④甲的成绩的极差等于乙的成绩的极差

①甲的成绩的平均数等于乙的成绩的平均数 ②甲的成绩的中位数大于乙的成绩的中位数
③甲的成绩的方差小于乙的成绩的方差 ④甲的成绩的极差等于乙的成绩的极差
A.1 | B.2 | C.3 | D.4 |
某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
表中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为
,
.

(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 1 | 3 | 4 | | 7 |
表中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为


以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均为16.8,则
的值为( )



A.7 | B.10 | C.13 | D.16 |
某校理科实验班的100名学生在某次期中考试的语文成绩都不低于100分,现将语文成绩分成
五组,其成绩的频率分布直方图如图所示,估计这100名学生语文成绩的平均数(同一组数据用该区间的中点值作代表)( )



A.117 | B.120 | C.123 | D.125 |
2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着
的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )



A.样本中的女生数量多于男生数量 |
B.样本中有学物理意愿的学生数量多于有学历史意愿的学生数量 |
C.样本中的男生偏爱物理 |
D.样本中的女生偏爱历史 |
中华文化博大精深,源远流长,每年都有大批外国游客入境观光旅游或者学习等,下面是
年至
年三个不同年龄段外国入境游客数量的柱状图:

下面说法错误的是:( )



下面说法错误的是:( )
A.![]() ![]() ![]() |
B.![]() |
C.![]() ![]() ![]() |
D.![]() ![]() ![]() |
某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100)作为样本(样本容量为
)进行统计,按照
,
,
,
,
的分组作出频率分布直方图,已知得分在
,
的频数分别为8,2.

(1)求样本容量
和频率分布直方图中的
的值;
(2)估计本次竞赛学生成绩的中位数;
(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在
内的概率.









(1)求样本容量


(2)估计本次竞赛学生成绩的中位数;
(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在

某健身馆在2019年7、8两月推出优惠项目吸引了一批客户.为预估2020年7、8两月客户投入的健身消费金额,健身馆随机抽样统计了2019年7、8两月100名客户的消费金额,分组如下:
,
,
,…,
(单位:元),得到如图所示的频率分布直方图:

(1)请用抽样的数据预估2020年7、8两月健身客户人均消费的金额(同一组中的数据用该组区间的中点值作代表);
(2)若把2019年7、8两月健身消费金额不低于800元的客户,称为“健身达人”,经数据处理,现在列联表中得到一定的相关数据,请补全空格处的数据,并根据列联表判断是否有
的把握认为“健身达人”与性别有关?
(3)为吸引顾客,在健身项目之外,该健身馆特别推出健身配套营养品的销售,现有两种促销方案.
方案一:每满800元可立减100元;
方案二:金额超过800元可抽奖三次,每次中奖的概率为
,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折.
若某人打算购买1000元的营养品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.
附:






(1)请用抽样的数据预估2020年7、8两月健身客户人均消费的金额(同一组中的数据用该组区间的中点值作代表);
(2)若把2019年7、8两月健身消费金额不低于800元的客户,称为“健身达人”,经数据处理,现在列联表中得到一定的相关数据,请补全空格处的数据,并根据列联表判断是否有

| 健身达人 | 非健身达人 | 总计 |
男 | 10 | | |
女 | | 30 | |
总计 | | | |
(3)为吸引顾客,在健身项目之外,该健身馆特别推出健身配套营养品的销售,现有两种促销方案.
方案一:每满800元可立减100元;
方案二:金额超过800元可抽奖三次,每次中奖的概率为

若某人打算购买1000元的营养品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.
附:
![]() | 0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
![]() | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 |
