- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为推进农村经济结构调整,某乡村举办水果观光采摘节,并推出配套乡村游项目.现统计了4月份100名游客购买水果的情况,得到如图所示的频率分布直方图.

(1)若将购买金额不低于80元的游客称为“优质客户”,现用分层抽样的方法从样本的“优质客户”中抽取5人,求这5人中购买金额不低于100元的人数;
(2)从(1)中的5人中随机抽取2人作为幸运客户免费参加乡村游项目,请列出所有的基本事件,并求2人中至少有1人购买金额不低于100元的概率.

(1)若将购买金额不低于80元的游客称为“优质客户”,现用分层抽样的方法从样本的“优质客户”中抽取5人,求这5人中购买金额不低于100元的人数;
(2)从(1)中的5人中随机抽取2人作为幸运客户免费参加乡村游项目,请列出所有的基本事件,并求2人中至少有1人购买金额不低于100元的概率.
某知名电商在
双十一购物狂欢节中成交额再创新高,
月
日单日成交额达
亿元.某店主在此次购物狂欢节期间开展了促销活动,为了解买家对此次促销活动的满意情况,随机抽取了参与活动的
位买家,调查了他们的年龄层次和购物满意情况,得到年龄层次的频率分布直方图和“购物评价为满意”的年龄层次频数分布表.年龄层次的频率分布直方图:

“购物评价为满意”的年龄层次频数分布表:
(1)估计参与此次活动的买家的平均年龄(同一组中的数据用该组区间的中点值做代表);
(2)若年龄在
岁以下的称为“青年买家”,年龄在
岁以上(含
岁)的称为“中年买家”,完成下面的列联表,并判断能否有
的把握认为中、青年买家对此次活动的评价有差异?
附:参考公式:
.






“购物评价为满意”的年龄层次频数分布表:
年龄(岁) | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)估计参与此次活动的买家的平均年龄(同一组中的数据用该组区间的中点值做代表);
(2)若年龄在




| 评价满意 | 评价不满意 | 合计 |
中年买家 | | | |
青年买家 | | | |
合计 | | | ![]() |
附:参考公式:

![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场得分的情况如图所示的茎叶图表示,则甲、乙两名运动员得分的中位数分别为





A.13、19 |
B.19、13 |
C.18、20 |
D.20、18 |
海水稻就是耐盐碱水稻,是一种介于野生稻和栽培稻之间的普遍生长在海边滩涂地区的水稻,具有抗旱抗涝、抗病虫害、抗倒伏抗盐碱等特点.近年来,我国的海水稻研究取得了阶段性成果,目前已开展了全国大范围试种.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各
株,测量了它们的根系深度(单位:
),得到了如下的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )




A.海水稻根系深度的中位数是![]() |
B.普通水稻根系深度的众数是![]() |
C.海水稻根系深度的平均数大于普通水稻根系深度的平均数 |
D.普通水稻根系深度的方差小于海水稻根系深度的方差 |
某商场对一个月内每天的顾客人数进行统计得到如图所示的样本茎叶图,则该样本的中位数和众数分别是( )


A.46,45 | B.45,46 | C.46,47 | D.47,45 |
在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10天,每天新增疑似病例不超过7人”,根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )
A.甲地:总体均值为3,中位数为4 |
B.乙地:总体均值为1,总体方差大于0 |
C.丙地:总体均值为2,总体方差为3 |
D.丁地:中位数为2,众数为3 |
某小组10名学生参加的一次数学竞赛的成绩分别为:92、77、75、90、63、84、99、60、79、85,求总体平均数μ、中位数m、方差σ2和标准差σ;(列式并计算,结果精确到0.1)
经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间
内(单位:克),统计质量的数据作出其频率分布直方图如图所示:

(1)按分层抽样的方法从质量落在
,
的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;
(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:
请你通过计算为该村选择收益最好的方案.
(参考数据:
)


(1)按分层抽样的方法从质量落在


(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:
A.所有黄桃均以20元/千克收购; |
B.低于350克的黄桃以5元/个收购,高于或等于350克的以9元/个收购. |
(参考数据:
