- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了研究高二阶段男生、女生对数学学科学习的差异性,在高二年级所有学生中随机抽取25名男生和25名女生,计算他们高二上学期期中、期末和下学期期中、期末的四次数学考试成绩的各自的平均分,并绘制成如图所示的茎叶图.

(1)请根据茎叶图判断,男生组与女生组哪组学生的数学成绩较好?请用数据证明你的判断;
(2)以样本中50名同学数学成绩的平均分x0(79.68分)为分界点,将各类人数填入如下的列联表:
(3)请根据(2)中的列联表,判断能否有99%的把握认为数学学科学习能力与性别有关?
附:K2=

(1)请根据茎叶图判断,男生组与女生组哪组学生的数学成绩较好?请用数据证明你的判断;
(2)以样本中50名同学数学成绩的平均分x0(79.68分)为分界点,将各类人数填入如下的列联表:
分数 性别 | 高于或等于x0 | 低于x0 | 合计 |
男生 | | | |
女生 | | | |
合计 | | | |
(3)请根据(2)中的列联表,判断能否有99%的把握认为数学学科学习能力与性别有关?
附:K2=

P(K2≥k0) | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
如图,是民航部门统计的某年春运期间
个城市出售的往返机票的平均价格以及相比上年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是( )



A.深圳的变化幅度最小,北京的平均价格最高. |
B.深圳和厦门的平均价格同去年相比有所下降. |
C.平均价格从高到低居于前三位的城市为北京、深圳、广州. |
D.平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门. |
某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:

(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);
(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,现从这20人中,随机选取2人各赠送一部华为手机,求这2名市民年龄都在
内的人数为
,求
的分布列及数学期望.

(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);
(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,现从这20人中,随机选取2人各赠送一部华为手机,求这2名市民年龄都在



为了解某市公益志愿者的年龄分布情况,有关部门通过随机抽样,得到如图1的频率分布直方图.

(1)求a的值,并估计该市公益志愿者年龄的平均数(同一组中的数据用该组区间的中点值作代表);
(2)根据世界卫生组织确定新的年龄分段,青年是指年龄15~44岁的年轻人.据统计,该市人口约为300万人,其中公益志愿者约占总人口的40%.试根据直方图估计该市青年公益志愿者的人数.

(1)求a的值,并估计该市公益志愿者年龄的平均数(同一组中的数据用该组区间的中点值作代表);
(2)根据世界卫生组织确定新的年龄分段,青年是指年龄15~44岁的年轻人.据统计,该市人口约为300万人,其中公益志愿者约占总人口的40%.试根据直方图估计该市青年公益志愿者的人数.
某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在[20,45](岁)内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图如图,则在这200名市民中年龄在[40,45](岁)内的人数为( )


A.15 | B.20 | C.25 | D.30 |
某校随机抽取100名同学进行“垃圾分类"的问卷测试,测试结果发现这100名同学的得分都在[50,100]内,按得分分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图,则这100名同学的得分的中位数为( )


A.![]() | B.![]() |
C.![]() | D.![]() |
甲、乙两名技工在相同的条件下生产某种零件,连续6天中,他们日加工的合格零件数的统计数据的茎叶图,如图所示

(1)写出甲、乙的中位数和众数;
(2)计算甲、乙的平均数与方差,并依此说明甲、乙两名技工哪名更为优秀.

(1)写出甲、乙的中位数和众数;
(2)计算甲、乙的平均数与方差,并依此说明甲、乙两名技工哪名更为优秀.
在一次技能比赛中,共有12人参加,他们的得分(百分制)茎叶图如图,则他们得分的中位数和方差分别为( )


A.89 54.5 | B.89 53.5 |
C.87 53.5 | D.89 54 |