- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是( )


A.月接待游客量逐月增加 |
B.年接待游客量逐年增加 |
C.各年的月接待游客量高峰期大致在7,8月 |
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 |
华为手机作为华为公司三大核心业务之一,2018年的销售量跃居全球第二名,某机构随机选取了100名华为手机的顾客进行调查,并将这
人的手机价格按照
,
,…
分成
组,制成如图所示的频率分布直方图,其中
是
的
倍.

(1)求
,
的值;
(2)求这
名顾客手机价格的平均数(同一组中的数据用该组区间的中间值作代表);
(3)利用分层抽样的方式从手机价格在
和
的顾客中选取
人,并从这
人中随机抽取
人进行回访,求抽取的
人手机价格在不同区间的概率.









(1)求


(2)求这

(3)利用分层抽样的方式从手机价格在






甲、乙两名同学在 6 次数学考试中,所得成绩用茎叶图表示如下,若甲、乙两人这 6 次考试的平均成绩分别用
表示,则下列结论正确的是( )



A.![]() | B.![]() |
C.![]() | D.![]() |
某中学组织了地理知识竞赛,从参加考试的学生中抽出40名学生,将其成绩(均为整数)分成六组
,
,…,
,其部分频率分布直方图如图所示.观察图形,回答下列问题.

(1)求成绩在
的频率,并补全这个频率分布直方图:
(2)估计这次考试的及格率(60分及以上为及格)和平均分;(计算时可以用组中值代替各组数据的平均值)
(3)从成绩在
和
的学生中选两人,求他们在同一分数段的概率.




(1)求成绩在

(2)估计这次考试的及格率(60分及以上为及格)和平均分;(计算时可以用组中值代替各组数据的平均值)
(3)从成绩在


在跳水比赛中,七位裁判为一选手打出的分数如下:9.0 8.9 9.0 9.5 9.3 9.4 9.3去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
A.9.2,0.02 | B.9.2,0.028 | C.9.3,0.02 | D.9.3,0.028 |
为提高城市居民生活幸福感,某城市公交公司大力确保公交车的准点率,减少居民乘车候车时间为此,该公司对某站台乘客的候车时间进行统计乘客候车时间受公交车准点率、交通拥堵情况、节假日人流量增大等情况影响在公交车准点率正常、交通拥堵情况正常、非节假日的情况下,乘客候车时间随机变量
满足正态分布
在公交车准点率正常、交通拥堵情况正常、非节假日的情况下,调查了大量乘客的候车时间,经过统计得到如图频率分布直方图.

(1)在直方图各组中,以该组区间的中点值代表该组中的各个值,试估计
的值;
(2)在统计学中,发生概率低于千分之三的事件叫小概率事件,一般认为,在正常情况下,一次试验中,小概率事件是不能发生的在交通拥堵情况正常、非节假日的某天,随机调查了该站的10名乘客的候车时间,发现其中有3名乘客候车时间超过15分钟,试判断该天公交车准点率是否正常,说明理由.
(参考数据:
,
,
,
,
)



(1)在直方图各组中,以该组区间的中点值代表该组中的各个值,试估计

(2)在统计学中,发生概率低于千分之三的事件叫小概率事件,一般认为,在正常情况下,一次试验中,小概率事件是不能发生的在交通拥堵情况正常、非节假日的某天,随机调查了该站的10名乘客的候车时间,发现其中有3名乘客候车时间超过15分钟,试判断该天公交车准点率是否正常,说明理由.
(参考数据:





已知某样本数据频率分布直方图共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的
,则中间一个小长方形的面积为______.

为了从甲乙两人中选一人参加校篮球队,教练将二人最近6次篮球比赛的得分数进行统计,甲乙两人的平均得分分别是
、
,则下列说法正确的是( )




A.![]() | B.![]() |
C.![]() | D.![]() |