- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了制定提升农民年收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如下频率分布直方图:

(1)根据频率分布直方图,估计50位农民的年平均收入
元(单位:千元)(同一组数据用该组数据区间的中点值表示);
(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布
,其中
近似为年平均收入
,
近似为样本方差
,经计算得
,利用该正态分布,求:
(i)在扶贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?
(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?
附参考数据:
,若随机变量X服从正态分布
,则
,
,
.

(1)根据频率分布直方图,估计50位农民的年平均收入

(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布






(i)在扶贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?
(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?
附参考数据:





我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准:用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),制作了频率分布直方图,

(Ⅰ)用该样本估计总体:
(1)估计该市居民月均用水量的平均数;
(2)如果希望86%的居民每月的用水量不超出标准,则月均用水量a的最低标准定为多少吨?
(Ⅱ)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量,其中月均用水量不超过2.5吨的人数为X,求X的分布列和均值.

(Ⅰ)用该样本估计总体:
(1)估计该市居民月均用水量的平均数;
(2)如果希望86%的居民每月的用水量不超出标准,则月均用水量a的最低标准定为多少吨?
(Ⅱ)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量,其中月均用水量不超过2.5吨的人数为X,求X的分布列和均值.
为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照
,
,
,
,
分为5组,其频率分布直方图如图所示.

(1)求图中
的值;
(2)估计这种植物果实重量的平均数
和方差
(同一组中的数据用该组区间的中点值作代表);
(3)已知这种植物果实重量不低于32.5克的即为优质果实,用样本估计总体.若从这种植物果实中随机抽取3个,其中优质果实的个数为
,求
的分布列和数学期望
.






(1)求图中

(2)估计这种植物果实重量的平均数


(3)已知这种植物果实重量不低于32.5克的即为优质果实,用样本估计总体.若从这种植物果实中随机抽取3个,其中优质果实的个数为



某汽车零件加工厂为迎接国庆大促销活动预估国庆七天销售量,该厂工作人员根据以往该厂的销售情况,绘制了该厂日销售量的频率分布直方图,如图所示,将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.

(1)根据频率分布直方图估计该厂的日平均销售量;(每组以中点值为代表)
(2)求未来
天内,连续
天日销售量不低于
吨,另一天日销售量低于
吨的概率;
(3)用
表示未来
天内日销售量不低于
吨的天数,求随机变量
的分布列、数学期望与方差.

(1)根据频率分布直方图估计该厂的日平均销售量;(每组以中点值为代表)
(2)求未来




(3)用




某城市一社区接到有关部门的通知,对本社区居民用水量进行调研,通过抽样调查的方法获得了100户居民某年的月均用水量(单位:t),通过分组整理数据,得到数据的频率分布直方图如图所示:

(Ⅰ)求图中m的值;并估计该社区居民月均用水量的中位数和平均值.(保留3位小数)
(Ⅱ)用此样本频率估计概率,若从该社区随机抽查3户居民的月均用水量,问恰有2户超过
的概率为多少?
(Ⅲ)若按月均用水量
和
分成两个区间用户,按分层抽样的方法抽取10户,每户出一人参加水价调整方案听证会.并从这10人中随机选取3人在会上进行陈述发言,设来自用水量在区间
的人数为X,求X的分布列和数学期望.

(Ⅰ)求图中m的值;并估计该社区居民月均用水量的中位数和平均值.(保留3位小数)
(Ⅱ)用此样本频率估计概率,若从该社区随机抽查3户居民的月均用水量,问恰有2户超过

(Ⅲ)若按月均用水量



在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期. 一研究团队统计了某地区1000名患者的相关信息,得到如下表格:
(1)求这1000名患者的潜伏期的样本平均数
(同一组中的数据用该组区间的中点值作代表);
(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表. 请将列联表补充完整,并根据列联表判断是否有
的把握认为潜伏期与患者年龄有关;
(3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立. 为了深入研究,该研究团队随机调查了
名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?
附:
,其中
.
潜伏期(单位:天) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)求这1000名患者的潜伏期的样本平均数

(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表. 请将列联表补充完整,并根据列联表判断是否有

| 潜伏期![]() | 潜伏期![]() | 总计 |
50岁以上(含50岁) | | | ![]() |
50岁以下 | 55 | | |
总计 | | | 200 |
(3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立. 为了深入研究,该研究团队随机调查了

附:
| ![]() | ![]() | ![]() |
| ![]() | ![]() | ![]() |


某厂为了评估某种零件生产过程的情况,制定如下规则:若零件的尺寸在
,则该零件的质量为优秀,生产过程正常;若零件的尺寸在
且不在
,则该零件的质量为良好,生产过程正常;若零件的尺寸在
且不在
,则该零件的质量为合格,生产过程正常;若零件的尺寸不在
,则该零件不合格,同时认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,(其中
为样本平均数,
为样本标准差)下面是检验员从某一天生产的一批零件中随机抽取的20个零件尺寸的茎叶图(单位:cm)经计算得
,其中
为抽取的第
个零件的尺寸,
.

(1)利用该样本数据判断是否需对当天的生产过程进行检查;
(2)利用该样本,从质量良好的零件中任意抽取两个,求抽取的两个零件的尺寸均超过
的概率;
(3)剔除该样本中不在
的数据,求剩下数据的平均数
和标准差
(精确到0.01)
参考数据:
,
,
,













(1)利用该样本数据判断是否需对当天的生产过程进行检查;
(2)利用该样本,从质量良好的零件中任意抽取两个,求抽取的两个零件的尺寸均超过

(3)剔除该样本中不在



参考数据:




为了解某中学学生对数学学习的情况,从该校抽了
名学生,分析了这
名学生某次数学考试成绩(单位:分),得到了如下的频率分布直方图:

(1)求频率分布直方图中
的值;
(2)根据频率分布直方图估计该组数据的中位数(精确到
);
(3)在这
名学生的数学成绩中,从成绩在
的学生中任选
人,求次
人的成绩都在
中的概率.



(1)求频率分布直方图中

(2)根据频率分布直方图估计该组数据的中位数(精确到

(3)在这





为了调查学生参加公益劳动的情况,从某校随机抽取
名学生,经统计得到他们参加公益劳动的次数均在区间
内,其数据分组依次为:
,
,
,
,
.

(1)若这
名学生中,公益劳动次数在
内的人数为
人,求图中
的值;
(2)估计该校学生参加公益劳动的次数不少于
次的概率.








(1)若这




(2)估计该校学生参加公益劳动的次数不少于

某大型企业生产的某批产品细分为
个等级,为了了解这批产品的等级分布情况,从仓库存放的
件产品中随机抽取
件进行检测、分类和统计,并依据以下规则对产品进行打分:
级或
级产品打
分;
级或
级产品打
分;
级、
级、
级或
级产品打
分;其余产品打
分.现在有如下检测统计表:
规定:打分不低于
分的为优良级.
(1)①试估计该企业库存的
件产品为优良级的概率;
②请估计该企业库存的
件产品的平均得分.
(2)从该企业库存的
件产品中随机抽取
件,请估计这
件产品的打分之和为
分的概率.















等级 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
频数 | 10 | 90 | 100 | 200 | 200 | 100 | 100 | 100 | 70 | 30 |
规定:打分不低于

(1)①试估计该企业库存的

②请估计该企业库存的

(2)从该企业库存的



