- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.

若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间
上的运动员人数是( )

若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间

A.1 | B.2 | C.3 | D.4 |
哈尔滨市投资修建冰雪大世界,为了调查此次修建冰雪大世界能否收回成本,组委会成立了一个调查小组对国内参观冰雪大世界的游客的消费指数(单位:百元)进行调查,在调查的1000位游客中有100位哈尔滨本地游客,把哈尔滨本地游客记为A组,内外地游客记为B组,按分层抽样从这1000人中抽取A,B组人数如下表:
A组:
B组:

(1)确定
的值,再分别在答题纸上完成A组与B组的频率分布直方图;
(2)分别估计A,B两组游客消费指数的平均数,并估计被调查的1000名游客消费指数的平均数.
消费指数(百元) | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 3 | 4 | 6 | 5 | 2 |
B组:
消费指数(百元) | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 9 | 36 | ![]() | 54 | 9 |

(1)确定

(2)分别估计A,B两组游客消费指数的平均数,并估计被调查的1000名游客消费指数的平均数.
某校高中部有学生2 000人,其中高一学生800人,高二学生600人,高三学生600人.现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三各年级被抽取的学生人数分别为( )
A.![]() | B.![]() | C.![]() | D.![]() |
某次考试后,抽取了40位学生的成绩,并根据抽样数据制作的频率分布直方图如图所示,从成绩为[80,100]的学生中随机抽取了2人进行某项调查,则这两人分别来自两个不同分数段内的频率为____________.


2015年“国庆节”期间,高速公路车辆较多,交警部门通过路面监控装置抽样调查某一山区路段汽车行驶速度,采用的方法是:按到达监控点先后顺序,每隔50辆抽取一辆,总共抽取120辆,分别记下其行车速度,将行车速度(km/h)分成七段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),[90,95)后得到如图所示的频率分布直方图,据图解答下列问题:

(Ⅰ)求a的值,并说明交警部门采用的是什么抽样方法?
(Ⅱ)求这120辆车行驶速度的中位数和平均数的估计值(精确到0.1);

(Ⅰ)求a的值,并说明交警部门采用的是什么抽样方法?
(Ⅱ)求这120辆车行驶速度的中位数和平均数的估计值(精确到0.1);
某学校共有老、中、青教职工215人,其中青年教职工80人,中年教职工人数是老年教职工人数的2倍.为了解教职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工16人,则该样本中的老年教职工人数为( )
A.6 | B.8 | C.9 | D.12 |