- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
电视连续剧《人民的名义》自2017年3月28日在湖南卫视开播以来,引发各方关注,收视率、点击率均占据各大排行榜首位.我们用简单随机抽样的方法对这部电视剧的观看情况进行抽样调查,共调查了600人,得到结果如下:其中图1是非常喜欢《人民的名义》这部电视剧的观众年龄的频率分布直方图;表1是不同年龄段的观众选择不同观看方式的人数.


求:(I)假设同一组中的每个数据用该组区间的中点值代替,求非常喜欢《人民的名义》这部电视剧的观众的平均年龄;
(II)根据表1,通过计算说明我们是否有99%的把握认为观看该剧的方式与年龄有关?
附:
观看方式 年龄(岁) | 电视 | 网络 |
![]() | 150 | 250 |
![]() | 120 | 80 |


求:(I)假设同一组中的每个数据用该组区间的中点值代替,求非常喜欢《人民的名义》这部电视剧的观众的平均年龄;
(II)根据表1,通过计算说明我们是否有99%的把握认为观看该剧的方式与年龄有关?
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:

为了解某校高三学生的视力情况,随机地抽查了该校1000名高三学生的视力情况,得到频率分布直方图,如图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为
,视力在4.6到5.0之间的学生数
,
的值分别为( )



A.![]() | B.![]() | C.![]() | D.![]() |
如图茎叶图记录了甲、乙两位射箭运动员的5次比赛成绩(单位:环),若两位运动员平均成绩相同,则成绩较为稳定(方差较小)的那位运动员成绩的方差为 _________.


某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如下图所示:

(1)根据频率分布直方图,求重量超过505克的产品数量;
(2)在上述抽取的40件产品中任取2件,设
为重量超过505克的产品数量,求
的分布列.

(1)根据频率分布直方图,求重量超过505克的产品数量;
(2)在上述抽取的40件产品中任取2件,设


某校从参加高一年级期末考试的学生中抽出20名学生,将其成绩(均为整数)分成六段[40,50),[50,60)…[90,100],然后画出如下所示频率分布直方图,但是缺失了第四组[70,80)的信息.观察图形的信息,回答下列问题.

(1)求第四组[70,80)的频率;
(2)从成绩是[50,60)和[60,70)的两段学生中任意选两人,求他们在同一分数段的概率.

(1)求第四组[70,80)的频率;
(2)从成绩是[50,60)和[60,70)的两段学生中任意选两人,求他们在同一分数段的概率.
(2015秋•运城期末)下列叙述随机事件的频率与概率的关系中正确的是( )
A.频率就是概率 |
B.频率是客观存在的,与试验次数无关 |
C.随着试验次数的增加,频率一般会稳定在一个常数附近 |
D.概率是随机的,在试验前不能确定 |
(2011•聊城一模)某校高一、高二年级各有7个班参加歌咏比赛,他们的得分的茎叶图如图所示,对这组数据分析正确的是( )


A.高一的中位数大,高二的平均数大 |
B.高一的平均数大,高二的中位数大 |
C.高一的中位数、平均数都大 |
D.高二的中位数、平均数都大 |
(2015秋•运城期末)某学生对其30位亲属的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.

(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;
(2)根据茎叶图,指出50岁以下的亲属当中饮食指数高于70的人数,并计算这些人的饮食指数的平均数和方差(精确到整数)

(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;
(2)根据茎叶图,指出50岁以下的亲属当中饮食指数高于70的人数,并计算这些人的饮食指数的平均数和方差(精确到整数)
(2015秋•赣州期末)从全校参加数学竞赛的学生的试卷中,抽取一个样本,考察竞赛的成绩分布,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的长方形的高之比为1:3:6:4:2,最右边一组的频数是6.

(1)成绩落在哪个范围的人数最多?并求出该小组的频数、频率;
(2)估计这次竞赛中,成绩高于60分的学生占总人数的百分百.

(1)成绩落在哪个范围的人数最多?并求出该小组的频数、频率;
(2)估计这次竞赛中,成绩高于60分的学生占总人数的百分百.