- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校在一次期末数学测试中,为统计学生的考试情况,从学校的
名学生中随机抽取
名学生的考试成绩,被测学生成绩全部介于
分到
分之间(满分
分),将统计结果按如下方式分成八组:第一组
,第二组
,……,第八组:
,如图是按上述分组方法得到的频率分布直方图的一部分.

(1)求第七组的频率,完成频率分布直方图,并估计该组数据的众数和中位数;
(2)请根据频率分布直方图估计该校的
名学生这次考试成绩的平均分
(统计方法中,同一组数据常用该组区间的中点值作为代表).









(1)求第七组的频率,完成频率分布直方图,并估计该组数据的众数和中位数;
(2)请根据频率分布直方图估计该校的

(统计方法中,同一组数据常用该组区间的中点值作为代表).
某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的结果如下:

(1)求表中
的值
(2)若以上表频率作为概率,且每天的销售量相互独立,
①求5天中该种商品恰有2天销售量为1.5吨的概率;
②已知每吨该商品的销售利润为2千元,
表示该种商品两天销售利润的和(单位:千元),求
的分布列和期望.

(1)求表中

(2)若以上表频率作为概率,且每天的销售量相互独立,
①求5天中该种商品恰有2天销售量为1.5吨的概率;
②已知每吨该商品的销售利润为2千元,


某校高二年级有10个班,若每个班有50名同学,均随机编号1,2,…50,为了了解他们对体育运动的兴趣,要求每班第15号同学留下来进行问卷调查,这里运用的抽样方法是( )
A.抽签法 | B.系统抽样 | C.随机数表法 | D.有放问抽法 |
从全校参加信息技术知识竞赛学生的试卷中,抽取一个样本,考察竞赛的成绩分布,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的长方形的高之比是1:3:6:4:2,最中间一组的频数是18,请结合直方图提供的信息,解答下列问题:

(1)求样本容量;
(2)若从第3,4,5组中采用分层抽样的方法抽取6人参加竞赛成绩分析会,求从第3,4,5组中各抽取的学生人数.

(1)求样本容量;
(2)若从第3,4,5组中采用分层抽样的方法抽取6人参加竞赛成绩分析会,求从第3,4,5组中各抽取的学生人数.
学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n且支出在[20,60)元的样本,其频率分布直方图如图所示,根据此图估计学生在课外读物方面的支出费用的中位数为( )元.


A.45 | B.46 | C.![]() | D.![]() |
为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,第1小组的频数为6,则报考飞行员的学生人数是( )


A.32 | B.40 | C.48 | D.56 |
某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是
,样本数据分组为
,
,
,
,
.

(1)求直方图中
的值;
(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿.







(1)求直方图中

(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿.
如图是2012赛季NBA纽约尼克斯队两名球星安东尼和林书豪每场比赛得分的茎叶图,则两人比赛得分的中位数之和是( )


A.28 | B.38 | C.48 | D.58 |