- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 利用焦半径公式解决直线与抛物线交点问题
- 求直线与抛物线相交所得弦的弦长
- + 抛物线中的三角形面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知双曲线
的两条渐近线与抛物线
的准线分别交于
两点,
为坐标原点. 若双曲线的离心率为
的面积为
, 则抛物线的焦点为( )






A.![]() | B.![]() | C.![]() | D.![]() |
在平面直角坐标系xOy中,F是抛物线C:x2 =2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为
,过定点D(0,p)作直线与抛物线C相交于A,B两点。
(1)求抛物线C的方程;
(2)若点N是点D关于坐标原点O的对称点,求△ANB面积的最小值;
(3)是否存在垂直于y轴的直线l,使得l被以AD为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由.

(1)求抛物线C的方程;
(2)若点N是点D关于坐标原点O的对称点,求△ANB面积的最小值;
(3)是否存在垂直于y轴的直线l,使得l被以AD为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由.
过抛物线y2=2px(p>0)的焦点F的直线与抛物线相交于M、N两点,自M、N向准线l作垂线,垂足分别为M1、N1.
(1)求
;
(2)记△FMM1、△FM1N1、△FNN1的面积分别为
、
、
,求
(1)求

(2)记△FMM1、△FM1N1、△FNN1的面积分别为



