刷题首页
题库
高中数学
题干
已知椭圆
的两个焦点分别为
,离心率为
,过
的直线
与椭圆
交于
两点,且
的周长为
(1)求椭圆
的方程;
(2)若直线
与椭圆
分别交于
两点,且
,试问点
到直线
的距离是否为定值,证明你的结论.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-02 05:39:57
答案(点此获取答案解析)
同类题1
已知
分别是椭圆
的左右焦点,
P
是该椭圆上一定点,若点
在第一象限,且
.
(Ⅰ)求
的值;
(Ⅱ)求点
的坐标.
同类题2
已知椭圆
的离心率为
,点
是
E
上一点.
(1)求
E
的标准方程;
(2)若直线
l
的斜率为
k
,且经过点
,并与椭圆
E
交于不同的两点
P
,
Q
(均异于
A
),证明:
为定值.
同类题3
已知椭圆
:
,长半轴长与短半轴长的差为
,离心率为
.
(1)求椭圆
的标准方程;
(2)若在
轴上存在点
,过点
的直线
分别与椭圆
相交于
、
两点,且
为定值,求点
的坐标.
同类题4
椭圆
的焦距为
,则
的值为( ).
A.10
B.17
C.10或
D.
或
同类题5
已知椭圆
C
:
的两个焦点分别为
,点
M
(1,0)与椭圆短轴的两个端点的连线相互垂直.
(1)求椭圆
C
的方程;
(2)过点
M
(1,0)的直线与椭圆
C
相交于
A
、
B
两点,设点
N
(3,2),记直线
AN
、
BN
的斜率分别为
k
1
、
k
2
,求证:
k
1
+
k
2
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题