刷题首页
题库
高中数学
题干
如图,在平面直角坐标系
中,已知椭圆
:
的离心率
,左顶点为
,过点
作斜率为
的直线
交椭圆
于点
,交
轴于点
.
(1)求椭圆
的方程;
(2)已知
为
的中点,是否存在定点
,对于任意的
都有
,若存在,求出点
的坐标;若不存在说明理由;
(3)若过
点作直线
的平行线交椭圆
于点
,求
的最小值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-13 01:45:49
答案(点此获取答案解析)
同类题1
已知中心在原点的椭圆
C
1
和抛物线
C
2
有相同的焦点(1,0),椭圆
C
1
过点
,抛物线
的顶点为原点.
(1)求椭圆
C
1
和抛物线
C
2
的方程;
(2)设点
P
为抛物线
C
2
准线上的任意一点,过点
P
作抛物线
C
2
的两条切线
PA
,
PB
,其中
A
、
B
为切点.
设直线
PA
,
PB
的斜率分别为
k
1
,
k
2
,求证:
k
1
k
2
为定值;
②若直线
AB
交椭圆
C
1
于
C
,
D
两点,
S
△
PAB
,
S
△
PCD
分别是△
PAB
,△
PCD
的面积,试问:
是否有最小值?若有,求出最小值;若没有,请说明理由.
同类题2
已知椭圆
C
:
1(
a
>
b
>0),椭圆
C
上的点到焦点距离的最大值为9,最小值为1.
(1)求椭圆
C
的标准方程;
(2)求椭圆
C
上的点到直线
l
:4
x
﹣5
y
+40=0的最小距离?
同类题3
已知椭圆
,
为右焦点,圆
,
为椭圆
上一点,且
位于第一象限,过点
作
与圆
相切于点
,使得点
,
在
的两侧.
(Ⅰ)求椭圆
的焦距及离心率;
(Ⅱ)求四边形
面积的最大值.
同类题4
定义:若两个椭圆的离心率相等,则称两个椭圆是“相似”的.如图,椭圆
与椭圆
是相似的两个椭圆,并且相交于上下两个顶点,椭圆
的长轴长是4,椭圆
长轴长是2,点
,
分别是椭圆
的左焦点与右焦点.
(1)求椭圆
,
的方程;
(2)过
的直线交椭圆
于点
,
,求
面积的最大值.
同类题5
若
是椭圆
的左、右两个焦点,
是椭圆上的动点,则
的最小值为_____
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中存在定点满足某条件问题