刷题首页
题库
高中数学
题干
已知抛物线
的焦点为椭圆
的右焦点,且椭圆长轴的长为4,
、
是椭圆上的两点;
(1)求椭圆标准方程;
(2)若直线
经过点
,且
,求直线
的方程;
(3)若动点
满足:
,直线
与
的斜率之积为
,是否存在两个定点
、
,使得
为定值?若存在,求出
、
的坐标;若不存在,请说明理由;
上一题
下一题
0.99难度 解答题 更新时间:2020-02-13 01:12:28
答案(点此获取答案解析)
同类题1
已知椭圆
的左右焦点分别为
,点
为短轴的一个端点,
.
(1)求椭圆
的方程;
(2)如图,过右焦点
,且斜率为
的直线
与椭圆
相交于
两点,
为椭圆的右顶点,直线
分别交直线
于点
,线段
的中点为
,记直线
的斜率为
.
求证:
为定值.
同类题2
设椭圆
的左右焦点分别为
、
,椭圆的离心率为
,
为椭圆上任意一点,
的最大面积为
.
(1)求椭圆
的标准方程;
(2)过
的直线
与椭圆交于
、
两点,连接
、
,若
的内切圆面积为
,则求直线
方程.
同类题3
已知
是椭圆
与圆
的一个交点,且圆心
是椭圆的一个焦点,
(1)求椭圆
的方程;
(2)过
的直线交圆与
、
两点,连接
、
分别交椭圆与
、
点,试问直线
是否过定点?若过定点,则求出定点坐标;若不过定点,请说明理由.
同类题4
已知椭圆
的左、右焦点分别是
,
是其左右顶点,点
是椭圆
上任一点,且
的周长为6,若
面积的最大值为
.
(1)求椭圆
的方程;
(2)若过点
且斜率不为0的直线交椭圆
于
两个不同点,证明:直线
于
的交点在一条定直线上.
同类题5
已知椭圆
:
的离心率为
,点
,
分别为椭圆
的左、右顶点,点
在
上,且
面积的最大值为
(1)求椭圆
的方程;
(2)设
为
的左焦点,点
在直线
上,过
作
的垂线交椭圆
于
,
两点.证明:直线
平分线段
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题