- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- + 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
的左顶点为
,右焦点为
,斜率为1的直线与椭圆
交于
,
两点,且
,其中
为坐标原点.
(1)求椭圆
的标准方程;
(2)设过点
且与直线
平行的直线与椭圆
交于
,
两点,若点
满足
,且
与椭圆
的另一个交点为
,求
的值.









(1)求椭圆

(2)设过点











设直线
与抛物线
交于
两点,与椭圆
交于
两点,设直线

(
为坐标原点)的斜率分别为


,若
.
(1)证明:直线
过定点,并求出该定点的坐标;
(2)是否存在常数
,满足
?并说明理由.














(1)证明:直线

(2)是否存在常数


已知椭圆
的一个顶点
,过左焦点且垂直于x轴的直线截椭圆C得到的弦长为2,直线
与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当
的面积为
时,求实数k的值.



(1)求椭圆C的方程;
(2)当


椭圆的焦点
,
,长轴长为
,在椭圆上存在点
,使
,对于直线
,在圆
上始终存在两点
使得直线上有点
,满足
,则椭圆的离心率的取值范围是( )










A.![]() | B.![]() | C.![]() | D.![]() |
设椭圆
的离心率为
,椭圆
上一点
到左右两个焦点
的距离之和是4.
(1)求椭圆的方程;
(2)已知过
的直线与椭圆
交于
两点,且两点与左右顶点不重合,若
,求四边形
面积的最大值.





(1)求椭圆的方程;
(2)已知过





如图,点F为椭圆C:
(a>b>0)的左焦点,点A,B分别为椭圆C的右顶点和上顶点,点P(
,
)在椭圆C上,且满足OP∥AB.

(1)求椭圆C的方程;
(2)若过点F的直线l交椭圆C于D,E两点(点D位于x轴上方),直线AD和AE的斜率分别为
和
,且满足
﹣
=﹣2,求直线l的方程.




(1)求椭圆C的方程;
(2)若过点F的直线l交椭圆C于D,E两点(点D位于x轴上方),直线AD和AE的斜率分别为




已知
为椭圆
的右顶点,点
在椭圆
的长轴上,过点
且不与
轴重合的直线交椭圆
于
两点,当点
与坐标原点
重合时,直线
的斜率之积为
.
(1)求椭圆
的标准方程;
(2)若
,求
面积的最大值.












(1)求椭圆

(2)若

