- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- + 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆C的中心在原点O,焦点在x轴上,椭圆的两焦点与椭圆短轴的一个端点构成等边三角形,右焦点到右顶点的距离为1.
(1)求椭圆C的标准方程;
(2)是否存在与椭圆C交于A,B两点的直线l:
,使得
成立?若存在,求出实数m的取值范围;若不存在,请说明理由.
(1)求椭圆C的标准方程;
(2)是否存在与椭圆C交于A,B两点的直线l:


已知椭圆
(
)的焦距为2,离心率为
,右顶点为
.
(I)求该椭圆的方程;
(II)过点
作直线
交椭圆于两个不同点
,求证:直线
,
的斜率之和为定值.




(I)求该椭圆的方程;
(II)过点





已知椭圆
的中心在坐标原点,且经过点
,它的一个焦点与抛物线E:
的焦点重合,斜率为k的直线l交抛物线E于A、B两点,交椭圆
于C、D两点.
(1)求椭圆
的方程;
(2)直线l经过点
,设点
,且
的面积为
,求k的值;
(3)若直线l过点
,设直线
,
的斜率分别为
,
,且
,
,
成等差数列,求直线l的方程.




(1)求椭圆

(2)直线l经过点




(3)若直线l过点








设椭圆
的左、右焦点分别为
,左顶点为A,左焦点到左顶点的距离为1,离心率为
.
(1)求椭圆M的方程;
(2)过点A作斜率为k的直线与椭圆M交于另一点B,连接
并延长交椭圆M于点C.若
,求k的值.



(1)求椭圆M的方程;
(2)过点A作斜率为k的直线与椭圆M交于另一点B,连接


已知椭圆
的左、右顶点分别为
,
,上下顶点分别为
,
,左、右焦点分别为
,
,离心率为e.
(1)若
,设四边形
的面积为
,四边形
的面积为
,且
,求椭圆C的方程;
(2)若
,设直线
与椭圆C相交于P,Q两点,
分别为线段
,
的中点,坐标原点O在以MN为直径的圆上,且
,求实数k的取值范围.







(1)若






(2)若






已知椭圆C:
1(a>b>0)的左、右焦点分别为F1,F2,离心率为
,A为椭圆C上一点,且AF2⊥F1F2,且|AF2|
.
(1)求椭圆C的方程;
(2)设椭圆C的左、右顶点为A1,A2,过A1,A2分别作x轴的垂线 l1,l2,椭圆C的一条切线l:y=kx+m(k≠0)与l1,l2交于M,N两点,试探究
•
是否为定值,并说明理由.



(1)求椭圆C的方程;
(2)设椭圆C的左、右顶点为A1,A2,过A1,A2分别作x轴的垂线 l1,l2,椭圆C的一条切线l:y=kx+m(k≠0)与l1,l2交于M,N两点,试探究


已知椭圆C:
(a>b>0)的右焦点为F(2
,0),过F作圆x2+y2=b2的一条切线,切点为T,延长FT交椭圆C于点A,若T为线段AF的中点,则椭圆C的方程为( )


A.![]() | B.![]() |
C.![]() | D.![]() |
如图,在平面直角坐标系xOy中,椭圆C:
(a>b>0)的离心率为
,短轴长是2.

(1)求椭圆C的方程;
(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与椭圆C的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,当
,求k的取值范围.



(1)求椭圆C的方程;
(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与椭圆C的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,当
